BET-B. Tells 2024

Ouestion	Booklet	Version:
-----------------	----------------	----------

	•	
F	1	

On. Booklet No:

Roll Number:

INSTRUCTIONS TO CANDIDATES

- 1. Fill in the OMR sheet carefully as per the instructions given on the back of the OMR Sheet / Admit Card. OMR sheet not correctly filled in will not be valued.
- 2. Write your Roll Number (all eight digits) and Version as **A** on the Question Booklet and on the left hand side of the OMR sheet (basic data part).
- 3. The examination consists of 120 Objective type multiple choice questions, which are to be answered in 120 minutes.
- 4. After opening the Question Booklet ensure that there are 120 Questions and that the printing of all the questions are legible. If there are any missing or illegibly printed questions, the matter may be reported to the Invigilator immediately
- 5. There are 4 options (A, B, C & D) for each objective type question. Mark the most appropriate answer to each question by blackening fully the corresponding bubble in the OMR sheet with a black/blue ink ball point pen. For every correct answer 1 mark will be awarded. No deduction of mark will be made for incorrect answer and unanswered questions. Marking of more than one bubble against a question number in the OMR sheet shall be considered as an incorrect answer. Erasing, overwriting, partial marking, etc. shall also be treated as incorrect answer.
- 6. Rough work and calculations can be made in the blank pages attached to the question booklet. Watch, Calculator, Mobile phone, Electronic instruments etc. shall not be allowed in the examination hall.
- 7. The OMR Sheet and the Hall Ticket should be returned to the Invigilator. The Counterfoil of the Hall Ticket and Question Booklet and Candidates copy of the OMR answer sheet can be retained by the candidate after the examination.
- 8. Answer keys will be published in the website www.lbscentre.kerala.gov.in after the examination. Complaints, if any, from the candidates regarding the questions, responses / probable answer may be sent to the Email id ddcc.lbs@kerala.gov.in within two calendar days from the date of publication of the answer keys. Complaints not substantiated with supporting documents will not be considered. However the decision of the experts regarding such complaints on the answer keys shall be final.
- 9. The Answer sheet of candidates who indulge in malpractice in any form shall not be valued.
- 10. The candidates will be allowed to leave the hall only after the completion of the examination time and after handing over the Answer sheet to the Invigilator.

A

24023

120 MINUTES

1.	What	is the proport	ion of S	SiO2 pre	esent ir	the ma	anufacturing	g of ceme	ent?	
	A)	60 - 65%	B)	17 - 2	5%	C)	20 - 30%	D)	10 - 15%	
2.	As pe	r the National orized into wh	Buildi	ng Cod	e of Inc	dia, edu ecupan	icational bui	ildings a	re	
	A)	Group A	B)	Group		C)	Group C	D)	Group D	
3.	Thom	atio quotient o	1.4	J 1 J:-	ء مائدنہ	ha tota	l floor area (on all flo	ors by the	
٥.	area o	of the plot is k	nown a	a by aiv is:	nding i	ne ioia	i ilooi area (
	A)	Floor area ra			B)	Cover	ed area ratio)		
	C)	Build area ra	atio		D)	None	of the above	e		
4	XX71 4	!- 41 DIG		1 10		•	CM - dulan br	rioleg?		
4.	w nat A)	is the BIS rec					n x 10 cm x			
	C)	(19 cm x 9 c (16 cm x 10								
	C)	(10 cm x 10	CIII X J	(CIII)	(ט	(12 01	II X 10 CIII X	12 (111)		
5.	What	is the proport	tion of	CaO pr	esent in	n the m	anufacturing	g of cem	ent?	
	A)	60 - 65%					20 - 30%	D)		ó
6.	A 000	rding to the In	dian st	andard	of com	ant wil	not in the nor	miggible		
0.		for the total lo				iciii, wi	iai is the per	1111221016	illaxilliuli	1
	A)			> 2%		C)	> 4%	D)	> 5%	
7.	withs	quality buildin tand the load d this crushin	of the s	superstr	ucture.	Typica	uate crushir ally, what m	ng streng iinimum	th to value	
	A)	900 kg/cm^2			B)	1000	kg/cm ²			
	C)	1200 kg/cm	n^2		D)		kg/cm ²			
8.	The pof on	oortion of brice e end and cen	k obtai tre of o	ned by ne side	cutting?	g off the	e triangular	piece be	tween cent	re
	A)	Bat			B)	Close	er			
	C)	King closer			D)	Beve	lled closer			
9.	As ne	er Indian stand	lard wh	nat is th	e chec	fic -				
<i>)</i> .	A) A	2.16	B)	2.56	c speci	C)				Ý
							3.16	D)	4.46	
10.	What a cru	are the comp	lex cor	npound g and h	ls form ydratio	ed duri	ng the burn	ing proc	ess that pla	ıy
	A)	Hydration c	ompou	nds	B)		ies compou	nda		
	C)	Calcium con	mpoun	ds	D)	Silic	a compound	ls		

11.	and may have a curve along its len							ored for a		me
	A)	Cup	B)	Bow		C)	Split	D)	Check	
12.		at percentage stance against Below 5%	t sulphat	alcium a tes?				n increas	se in	
	C)	Between 5		5%	B) D)		e 50% e75%	٠		•
13.	The	uniformity co	oefficier	nt of the	soil is	alwavs	:			
	A)	Greater that	an or eq	ual to 1	B)	Zero				
	C)	Equal to 1			D)	None	of these			
14.	bou	at word is use	n its liqu	cribe the	e moist	ure leve	el in soil tha	at marks	the	
	A)	Plastic lim	it		B)		kage limit			
	C)	Liquid lim	it		D)	None	of these			
15.	Whathe s	at is the term usoil mass?	used for	the ratio	o of the	total v	olume of vo	oids to th	e volume	of
	A)	Void ratio			B)	Air co	ntent			
	C)	Porosity			D)		of these			
16.	ana	efficiency of -23° C will b	a carnot e:	engine	operati	ng with	n reservoir t	emperati	ires of 10	00° C
	A)	33 %	B)	67 %		C)	40 %	D)	80 %	
17.	Ident	ify the correc	t statem	ent:						
	A)	Dual cycle	is more	efficien	t than o	otto evo	ele for a giv	en come		
	B)									atio
	C)	For a given Efficiency	compre	ssion ra	tio, bot	h otto	and diesel	cycle hav	e same	rano
	D)	None of the	se							
18.	Whic	h of the follow								
	A)	h of the follow Limited max	wing ao vimum t	es not d	lescribe	e Diese	l cycle?			
	B)	High compr	ession r	empera	ture					
	C)	Constant vo	lume he	allo est addit	ion					
•	D)	No spark plu	ig need	ed	1011					
19.	A two	stroke cycle	engines	gives h	ow ma	ny nov	ver strokes	comman		
	A)	engine, at the		_ 1	peed:	, Po	on ones	compare	u to four	stroke
	Aj	Half	B)	Same		C)	Double	D)	None o	f these

20.	The ra A) B) C) D)	tio of brake po Mechanical e Overall effici Indicated the Volumetric e	fficient ency rmal ef	cy	cated	power	is called:			
21.	The lo	owest temperat Flash point	ture at s	which the	e oil c nt	eases t C)	o flow when Cloud point	cooled i	s known a Pour poir	as: ıt
22.	Which A) C)	n battery is pre Lead - acid Sodium –Sul		F	3)	Lithiu	m – ion I – Cadmium	i		
23.	C.O.P A)	can be express Work done Refrigertion e	<u></u>		quatio 3)	Refrige	ertion effect ork done			
	C)	Work done Heat transter		Ι))	Heat tr Work				
24.	On a l A) B) C) D)	Psychrometric Constant dry Constant rela Constant dev Constant enti	Bulb to the string the string to the string	emperatu imidity li temperat	ire lin ines	es	follows:			
25.	A pun efficie A)	np is to delive ency is 50 %, 2 Kw	r 1000 what is B)	lit/ m³ of the brak 4 Kw	f wate	ratah erofn C)	nead of 120 m notor require 6 Kw	n. If the d to driv D)	pump e the pun 8 Kw	np?
26.		n device is the Driver gear Pressure plat		I	r of a (B) D)	clutch? Driver Flywl	n gear			
27.	In a fo A) B) C) D)	Our high rollin One is worki Two are wor Three are wo All the four a	ng roll king ro orking 1	and thre all and two and coll and c	e are vo are one ba	backin backir	g roll			
28.	Soft s A) C)	older consist of Copper and T Lead and Tir	Γin		B) D)		and Zinc and Alumini	ium		
29.	The c A)	utting tool in a Spindle	a millir B)	ng machi Columi	ne is 1 n	mounte C)	ed on: Knee	D)	Arbor	

30.	The A) C)	full form of ST Straight – Iii Stereo – Iith	thograp	phy	ototypi B) D)	Strete	o – lithography ght - liprograp		
31.		al analysis is p Kirchhoff's Kirchhoff's	rimaril Voltag	y based e Law	,	Farac	lay's Law s Law	ny	
32.	The A)	law which exp Ohm's Law Kirchhoff's l		ne princ	iple of B) D)	Farad	magnetic indu lay's Law omb's Law	iction:	
33.	Wha	t is the unit of Farad	inducta B)	ance? Henry	,	C)	Ohm	D)	Tesla
34.	Inap	parallel circuit	with r	esistors	of equ	al value	e, the current t	hrough	each
	resist A)	tor is? Equal	B)	Differ	ent	C)	Zero	D)	Infinite
35.	 In an AC circuit containing only a capacitor, the current: A) Leads the voltage by 90 degrees B) Lags the voltage by 90 degrees C) Is in phase with the voltage D) None of these 								
36.	The cA)	component white Resistor Transformer		oses ch	anges B) D)	in curre Capac Induct	citor	ric circ	uit:
37.	If the A)	RMS value of 3.54 A	`a sinu B)	soidal c 5 A	current	is 5A, C)	its peak value 7.07 A	is: D)	10 A
38.		ntire magnetic	flux o	f one co	oil link:	s the ot	her coil the co	oefficie	nt of
	coupli A)	ing is: Zero	B)	0.5		C)	1	D)	Infinity
39.	An ex A) B) C) D)	ample of static The voltage in The EMF ind The voltage g The EMF ind	nduced uced in generat	l in the n a DC ed in a i	rotor o motor's moving	f a gen s armat g coil			
40.	The MA)	IMF in a magn H I	etic ci B)	rcuit is N I	given l	by: C)	ВА	D)	VI

41.	A s	eries A.C. circuit has	$R = 4 \Omega$ and Σ	$L=5\Omega$. It will be e	xpressed i	n the
	rect	angular form as:					
		$(-4-j5)\Omega$	B)	(-4+	· j 5) Ω		
	C)	$(4+j5)\Omega$	D)	(4 - 1)	5) Ω		
42.	Rea	ctive power in an A(Coircuit is mea	sured in	n:		
	A)	Volt-amperes rea					
	B)	Volt-amperes (V					
	C)	Watts (W)	,				
	D)	None of the abov	e				
43.	An s	alternating voltage is	aivon by y = 0	ON cin3	14 t Its nea	k value w	ill be:
чэ.	A)	121.4 V B)	282.8 V	C)	141.4 V	D)	200 V
		121.1 V B)	202.0 ¥	٥)		ŕ	
44.		algebraic sum of ins	tantaneous pha	se volta	ages in a thre	ee-phase o	circuit is
	equa						
	A)	Zero	B)		voltage		
	C)	Phase voltage	D)	None	of these		
45.	In a	delta connection, the	e line current is	s:			
	A)	Equal to the phase					
	B)	$\sqrt{3}$ times the phas	e current				
	C)	Half of the phase	current				
	D)	$\frac{1}{\sqrt{3}}$ times the phas	e current				
46.	Maio	or portion of the curr	ent in an int ri n	sic sem	iconductor i	is caused	by:
	A) ³	Valence band elec			uction band		•
	C)	Holes in the valer	,		mally-genera		
	F						
47.	The	nost commonly use	d semiconduct	ing mat			vices is:
	A)	silicon B)	germanium	C)	copper	D)	carbon
48.	For a	silicon diode, the v	alue of the for	ward bi	as voltage ty	mically:	
	A)	Must be greater th	an 0.3 V		voluge is	picarry.	
	B)	Must be greater th					
	C)	Depends on the w	idth of the dep	letion r	egion		
	D)	Depends on the co	ncentration of	majori	ty carriers		
40	FEM						
49.		vidth of depletion la		unction			
	A)	Decreases with lig	1 0				
	B)	Increases with hea					
	C)	Increases under re					
	D)	Is independent of	applied voltage	е			

50.	The A)	emitter of a transistor is gene Must possess low resistant	erally d	loped heavily because it:	
	B)	Has to supply the charge c			
	C)	Is the first region of the tra			
	D)	Has to dissipate maximum			
	2)	rus to dissipate maximum	power		
51.	For	a properly hiased NPN transi	stor m	ost of the electrons from the emi	ttore
	A)	Recombines with holes in	the had	se	iter.
	B)	Recombines in the emitter			
	C)	pass through the base to th		otor	
	D)	Are stopped by the junction			
		The stopped by the junetion	ii baiii		
52.	Aval	anche breakdown is primaril	v dene	ndent on the phenomenon of:	
	A)	Collision	у асрел В)		
	C)	Recombination	D)	Doping Ionization	
	Ο)	recombination	D)	Tomzation	
53.	Silic	on is preferred for the manufa	acturin	a of Zener diodes because it:	
	A)	is relatively cheap	B)	has higher temperature and cur	rent canacity
	C)	needs lower doping level	,	has lower break-down voltage	cin capacity
	C)	needs lower doping lever	D)	has lower break-down voltage	
54.	Zene	r diodes are used primarily as	3.		
	A)	voltage regulators	B)	rectifiers	
	C)	oscillators	D)	amplifiers	
	- /	,	2)		
55.	The b	pasic reason for a Full Wave	rectifie	r having twice the efficiency of a	Half
		e rectifier is that:			
	A)	It makes use of a transform	er		
	B)	Its ripple factor is much les	S		
	C)	It utilizes both half cycle of		put	
	D)	Its output frequency is doub			
		1 1		1	
56.	When	a BJT is used in an amplifie	r circu	it, it works:	
	A)		B)	in saturation	
	C)	well into saturation	D)	over the active region	
			ŕ		
57.	The m	nain reason for the variation of	of amp	lifier gain with frequency is:	
	A)	The presence of both extern			
	B)	Due to interstage transforme			
*	C)	The logarithmic increase in		put power	
	D)	The Miller effect			
			40, 4		
58.				Modulation when carrier signal:	
	A)	Frequency equals modulating			
	B)	Frequency exceeds modulat			
	C)	Amplitude is same as modu			
	D)	Amplitude exceeds modulat	ing sig	gnal amplitude	

59.	The in A)	main disadvan High static i Expensive e	noise		ncy M B) D)	Limit	ed line	or sig.	ht range nterfere	
60.	In an carrie A)	Amplitude Mes how much a one-half	lodulate amount B)	ed wave of the to one-s	otal tra	100 per ansmitte C)	cent mo ed pow one-th	er.	ion, eac D)	h sideband two-third
61.	What A)	is the correct int a;	syntax B)	to decla		ariable C)	in C? int a:		D)	int a = 10;
62.	Whic A)	h of the follow int	wing is B)	a valid (123 vai			me? variab	le_1	D)	variable-1
63.	What	is the output int a = 5, b = printf("%d",	= 10;		g code	?				
	A)	5	B)	10		C)	15		D)	None of these
64.	Which	h of the follow	ving op B)	erators i	is used	l to get C)	the add	ress o	f a varia D)	able in C? #
65.	What	<pre>#include <st 0;="" int="" main()="" pre="" printf("%="" return="" {="" }<=""></st></pre>	dio.h>	d i	g code	?				
	A)	45	B)	35		C)	15		D)	30
66.	What A) C)	is the size of a 2 Bytes 8 Bytes	an <i>int</i> d		in C? B) D)	4 Byte		the co	ompiler	
67.	#incluint n	is the output of de <stdio.h> main() {</stdio.h>		ollowing	g code'					
	A)	2	B)	5		C)	10		D)	15

```
Which of the following is used to input a string in C?
 68.
        A)
               gets()
                              B)
                                     scanf()
                                                  C)
                                                         printf()
                                                                       D)
                                                                              putchar()
        What will be the output of the following code?
 69.
              #include <stdio.h>
              int main() {
                  int a = 10;
                  if (a < 20) {
                   printf("a is less than 20\n");
               return 0;
       A)
              No output
                                           B)
                                                  a is less than 20
       C)
              Error
                                           D)
                                                  None of these
70.
       Which of the following is not a valid storage class in C?
                             B)
                                    static
                                                  C)
                                                        register
                                                                      D)
                                                                             private
       Which of the following functions is used to compare two strings in C?
71.
              strcmp()
                             B)
                                    strcpy()
                                                        strcat()
                                                                             strlen()
                                                  C)
72.
       Which of the following statements about functions is true in C?
              A function can have more than one return statement
       B)
              A function cannot return a value
       C)
              A function cannot call another function
              Functions can only return integer values
       D)
       Which of the following is the correct syntax to declare a constant in C?
73.
                                          B)
                                                 int const a;
              const int a;
       A)
                                          D)
                                                 None of these
       C)
              Both A and B
      What is the output of the following code?
74.
      #include <stdio.h>
      int main() {
         int var = 10;
         int *ptr;
         ptr = &var;
         printf("%d", *ptr);
         return 0;
       }
                                                 10
                                          B)
             Address of var
      A)
                                                 Error
                                          D)
             Value of ptr
      C)
```

75.	Wh	at will be the	output o	f the f	ollowin	g code	?			
	int :	clude <stdio.htmain() *ptr="10;" 0;<="" eturn="" int="" printf("%d",="" td="" x="5;" x)="" {=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></stdio.htmain()>								
	A) C)	5 Address of	X		B) D)	10 Garb	oage value			
76.	If tw their A)	vo equal forces resultant will P/2	s of mag be: B)	gnitude P sir		at a poi C)	nt with an Zero	included a	ngle180°, 2P	
77.	The same A) B) C) D)	forces, which e plane, are kn Coplanar no Coplanar co Concurrent on-concurre	own as: on-conc oncurrer forces	urrent ur force	forces	oint, bu	t their line	s of action	lie on the	
78.	parts	the magnitude tant is 10 N. I in two directi	ons at r	iey Ac ight an	t at 60° igles are	, their 1 e equal	esultant is :	t at right a 13 N. Tw	ngles, the	ir 1
70	A)	1N, 3N	B)	1N, 2		C)	2N, 3N	D)	2N, 2N	
79.	withor A)	process of spli out changing in Splitting of	is effect	the gi on the	ven for body i B)	is calle	a number d: ution of a		nents,	
	C)	Force couple			D)	Balan	icing of co	uple		
80.	In wh A)	nich type of lever of fire Lever of thire Lever of thire			and loa B) D)	LCVCI	n the oppo of second of forth o	order	of the fulc	erum:
81.	A fran (wher	med structure e n = number	is perfe	ct if it s in a t	contair frame)	is mem	bers equal	to:		
	A)	n-1	B)	2n-1		C) (2n-2	D)	2n-3	
82.	The uA)	nit of moment kgm ²	of iner B)	tia of a m³	an area	is: C)	kg/m ²	D)	m^4	

	8	33.	TI A)	ne ur	it of ma Kg/m²	ss mom B		of ine Kgn		: C)	kg	m ²	D)	kg/m³
	8	4.	Th A) C)		io of lim Angle of Cone of	frictio	n	on to t	the nor B) D)	Ang	gle of	is defi repose nt of fr		
	85	5.	Wh A) B)] a	The algel bout any	braic su braic su point	ım c ım c is th	of the of the ne sam	forces mome ne, and	, consti nts of t I equal	tuting he for to the	the co	ouple, is zonstituting nt of the	zero. g the couple, couple itself.
			D)	A	A couple A couple	can be	bal	anced anced	by a s	single f by a co	orce. uple o	f oppo	site sense	e.
	86.		The alon	Cen g th	itre of gr e vertica	avity o	f rig	ght cir	cular :	solid co	ne wi	th heig	ght "h" is	measured
			A)	h		B)		h/3	130 13.	C)	h/2		D)	h/4
	87.	3	The A) C)	P	ance thro itch elix	ough w	hich	a scr	ew thi B) D)	Lead			ly in one	turn is:
	88.	1	and 7 nm.	70 m Wha	m respe	ctively velocit	. Th y ra	e effo tio?	of a d ort is a	pplied	ial what to the	neel and wheel	d axle ar of diame	e 80 mm eter 250
		F	A)	28		B)	•	48		C)	2		D)	3
	89.		() ()	Its Wo It's	the med ork done output of the a	hanica by it to to inpu	l ad o th	vanta	ge to i	ts velo			tio of:	
9	90.				ency of a		g ma	achine	e is ke	pt cons	tant,	its velo	ocity ratio	o is directly
		A) C))	Me	chanical	advan	tage		B) D)	Effor All of				
9	1.	Tł	ie va	lue	of c for	which	the	syste	m					
		IJ.			trivial so	.lution	ia.			cx -	y + c	z = 0 $z = 0$ $z = 0$		
		па	is a i	1011-	iriviai se	numon	18:							
		A)		0	•8	B)	<u>+</u>	1		C)	<u>±</u> 2		D)	3

- 92. The characteristic equation of the matrix $\begin{bmatrix} 1 & 0 & -2 \\ 2 & 0 & -3 \\ 1 & -1 & 2 \end{bmatrix}$ is:
 - A) $\lambda^3 3\lambda^2 + 3\lambda 1 = 0$ B) $\lambda^3 3\lambda^2 3\lambda 1 = 0$
 - C) $\lambda^3 3\lambda^2 + \lambda 1 = 0$ D) $\lambda^3 3\lambda^2 + 2\lambda 1 = 0$
- 93. Which of the following quadratic form is positive semi-definite?
 - A) Q(x,y) = xy B) $Q(x,y) = x^2 y^2$
 - C) $Q(x,y) = x^2 + 2xy + y^2$ D) $Q(x,y) = x^2 + xy$
- 94. If the eigen values of a 3×3 matrix A are 1, -1 and 2. Then determinant of A is:
 - A) 0 B) 1 C) 2 D)
- 95. If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is:
 - A) $\frac{-y}{x^2+y^2}$ B) $\frac{y}{x^2+y^2}$ C) 0
- 96. The value of $\lim_{(x,y)\to(2,0)} \left(\frac{y}{x+y-2}\right)$ is:
 - A) 0 B) 1 C) -1 D) Does not exist
- 97. The partial derivative of $f(x,y) = x^2y^3 + x^4y$ with respect to x at the point (1, 1) is:
 - A) 6 B) 4 C) 3 D) 1
- 98. The relative maxima of $f(x,y) = x^3y^2(12 x y)$ for x > 0, y > 0 occurs at: A) (1, 2) B) (2, 1) C) (4, 6) D) (6, 4)
- 99. The series: $\sum_{n=1}^{\infty} \frac{2}{2^{n}+x}$
 - A) converges for all x > 0
 - B) converges when 0 < x < 1 and diverges when x > 1
 - C) diverges when 0 < x < 1 and converges when x > 1
 - D) diverges for all x > 0
- 100. The series $1 + \frac{1}{3} + \frac{1}{2 \times 9} + \frac{1}{3 \times 27} + \frac{1}{4 \times 81}$... converges to:
 - A) $\ln 2 1$ B) $\ln \frac{2}{3} 1$ C) $\ln 3$ D) $\ln \frac{2}{3}$

101.	The c	coefficient of	κ² in th	e Taylo	or series	s expar	nsion of $f(x)$	$= sin^2$	x abou	t $x = \frac{\pi}{2}$ is:
	A)	1	B)	-1		C)	2	D)	-2	
102.	If $f(x)$ has a	$x(x) = \begin{cases} x, & -1 \\ 1 - x, & \text{of our ier series} \end{cases}$	$-\pi < x$ $0 < x$ s expan	x < 0 $x < \pi$ sion, th	en f (0)) is:				
	A)	$-\frac{1}{2}$	B)	0,,,		C)	$\frac{1}{2}$	D)	-1	
103.	A par the tin A)	ticle moves al me. The comp 6	long the conent of B)	e curve of its ve	given l	$\begin{array}{c} \text{by } x = \\ \text{in the } C \end{array}$	$2t, y = 3t^2$ direction of 2 2	$\vec{i} + 2\vec{j}$ -	$+\vec{k}$ at t	where <i>t</i> is = 1 is:
104.	partic	cceleration of the when both $\vec{r} = \vec{a}t^3 + \vec{b}$	velocit	ing part y and d	isplace	ment a	by $\vec{a}t + \vec{b}$. The re zero at time $\vec{a}t^3 + \frac{1}{2}\vec{b}t^2$	en the t	noveme	ent of the n by:
	C)	$\vec{r} = \frac{1}{4}\vec{a}t^3 +$	$\vec{b}t^2$		D)	$\vec{r} = \frac{1}{6}$	$\vec{a}t^3 + \frac{1}{6}\vec{b}t^2$			
105.	$\vec{i}-2\vec{j}$	lirectional der $\vec{j} + \vec{k}$ is:								direction of
	A)	$-\frac{8}{3}$	B)	3		C)	3	D)	3	
106.	A) B) C) D)	curl (φf) = curl curl f div curl f =	$ \phi \nabla \cdot f = \phi \nabla \times = gra = 0 $	$+ \nabla \phi \cdot f$ $f + \nabla \phi$ $d \ div \ f$	$ \phi \times f \\ f + \nabla^2 $					
107.	The d	livergence of			$x^2yz\vec{\imath}$ -					
	A)	0	B)		3 %.	C)		D)	4	
108.		general solutio								
	A) C)	y = (A + Bx) $y = Ax + Bx$	x)logx : ⁻⁴	f.	-		$Ax + Bx^4$ $Ae^x + Be^{4x}$			
109.	The I	aplace transfo	orm of	t sin 2	t is:		4	5 .	4 <i>s</i>	
	A)	$\frac{4s}{(s^2+4)^2}$	B)	$\frac{s}{(s^2+4)}$	2	C)	$(s^2+4)^2$	D)	(s^2+4)	

	11)	a h are cor	etante	then $F(af(x))$	+ ha	$(x)\big) = aF(s)$	+bG(s)	5).
	B)	If $F(s)$ den	ote the	complex Four	rier trar	sform of $f(x)$), then	•
	-,			$\left(\frac{s}{a}\right)$, $a \neq 0$.				
	C)		u	\u/	riar trar	as form of f(x)) then	
	C)	F(f(x-a))			ilei iiai	isionii oi j (x), then	
	D)	-	•		rier trar	sform of $f(x)$), then	
	_,			F(s+a)+			,, 111011	
		9 (4)		1 (5 1 4) 1	1 (5	,.		
Ques	tions 1	11-115. Read	the pas	ssage and choo	ose the	most appropri	iate ans	wer from
the o	ptions	provided.						
Cater	millare	have a giveth	41	_4	•		TC1	
electi	ric field	ds around the	sense in m with	at most land-l	based a	nimals do not. setae on its bo	Iney o	can sense
electr	orecep	otion. British r	esearch	ners have disco	overed :	this in laborate	uy — a orvevn	eriments
and th	heir im	laings were pi	ublished	d recently in th	ne Proc	eedings of the	Nation	al
Acad	emy of	Sciences. Th	ey stud	ied four speci	es of ca	ternillars: cin	nabar n	noth, scarce
vapoi	irer mo	oth, European	peacoc	k butterfly, ar	nd comi	mon wasp.		
111.	The '	sivth sense?	faatam	-:11	1			
111.	A)	purpose	B)	pursuit		of electri		
	/	purpose	D)	pursuit	C)	prevalence	D)	perception
112.	'Elec	troreception;	is consi	idered a 'feat'	becaus	e:		
	A)	The setae fu	inction	like feet				
	B)	The bristles						
	C)	It is a signif						
	D)	It was disco	verea o	only recently				
113.	The n	nismatched pr	ronouns	s in the second	1 centon	ice of the pass		
	A)	Feet/feat	B)	Feat/fete	C)	They/its		A 3 7
	2 CAU				-)	They/its	D)	Around/on
114.		eam of research	chers be	elonged to:				
	A)	The United			The U	Jnited States		
	C)	The United	Emirate	es D)	The U	Jnited Scientis	sts	
115.	The F	lironean neac	ock but	terfly is a/an:				
	A)	Mineral	B)	Insect		Б		
	,				C)	Bird	D)	Primate
116.	The a	djective/quali	fying w	ord in the ser	itence	'The provision		
				,	,	The provision	nal title	of the
	A)	Provisional	B)	Title	C)	Time	D)	T:
							D)	Live

Which of the following property does not hold for Fourier Transforms?

If F(s) and G(s) are Fourier transforms of f(x) and g(x) respectively and

117.	A) A household whose B) A family whose men	members shar mbers have a l mbers have br	re the family name ' brownish complexio own eyes	Brown'.
118.	D) A family whose men	possible	of an endowment by	y a generous donor.
	(Fill in the blanks, using thA) instead B)	e correct option	on) C) in spite	D) bespoke
119.	Rearrange the words (num you we were to miss all be 1 2 3 4 5 6		he logical order of a	a sentence:
	A) 1 3 6 4 5 2 7 C) 2 3 6 7 4 5 1	B) D)	7 4 5 1 3 2 6 6 3 2 7 4 5 1	
120.	Pick the correctly spelt wo A) Impostor B)	rd: impertinant	C) improudent	D) impaltry
	_			

LET - B.Sc 24

Question	Booklet	Version:
----------	----------------	----------

\
1

Qn. Booklet No:

24024

Roll Number:

ı					
1				1	1
ı					1
1			 		
ı					

INSTRUCTIONS TO CANDIDATES

- 1. Fill in the OMR sheet carefully as per the instructions given on the back of the OMR Sheet / Admit Card. OMR sheet not correctly filled in will not be valued.
- 2. Write your Roll Number (all eight digits) and Version as \mathbf{A} on the Question Booklet and on the left hand side of the OMR sheet (basic data part).
- 3. The examination consists of 120 Objective type multiple choice questions, which are to be answered in 120 minutes.
- 4. After opening the Question Booklet ensure that there are 120 Questions and that the printing of all the questions are legible. If there are any missing or illegibly printed questions, the matter may be reported to the Invigilator immediately
- 5. There are 4 options (A, B, C & D) for each objective type question. Mark the most appropriate answer to each question by blackening fully the corresponding bubble in the OMR sheet with a black/blue ink ball point pen. For every correct answer 1 mark will be awarded. No deduction of mark will be made for incorrect answer and unanswered questions. Marking of more than one bubble against a question number in the OMR sheet shall be considered as an incorrect answer. Erasing, overwriting, partial marking, etc. shall also be treated as incorrect answer.
- 6. Rough work and calculations can be made in the blank pages attached to the question booklet. Watch, Calculator, Mobile phone, Electronic instruments etc. shall not be allowed in the examination hall.
- 7. The OMR Sheet and the Hall Ticket should be returned to the Invigilator. The Counterfoil of the Hall Ticket and Question Booklet and Candidates copy of the OMR answer sheet can be retained by the candidate after the examination.
- 8. Answer keys will be published in the website www.lbscentre.kerala.gov.in after the examination. Complaints, if any, from the candidates regarding the questions, responses / probable answer may be sent to the Email id ddcc.lbs@kerala.gov.in within two calendar days from the date of publication of the answer keys. Complaints not substantiated with supporting documents will not be considered. However the decision of the experts regarding such complaints on the answer keys shall be final.
- 9. The Answer sheet of candidates who indulge in malpractice in any form shall not be valued.
- 10. The candidates will be allowed to leave the hall only after the completion of the examination time and after handing over the Answer sheet to the Invigilator.

- A) 2A
- B) 0
- C) I
- A + ID)

2. The value of c for which the system

$$x - cy + cz = 0$$

$$cx - y + cz = 0$$

$$cx + cy - z = 0$$

Has a non-trivial solution is:

- A)
- B) ± 1
- C) ± 2
- 3 D)

- The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is: 3.
 - A) 3
- B) 2
- C) 1
- D) 4
- The characteristic equation of the matrix $\begin{bmatrix} 1 & 0 & -2 \\ 2 & 0 & -3 \\ 1 & -1 & 2 \end{bmatrix}$ is: 4.
 - A)
- $\lambda^3 3\lambda^2 + 3\lambda 1 = 0$ B) $\lambda^3 3\lambda^2 3\lambda 1 = 0$
 - $\lambda^3 3\lambda^2 + \lambda 1 = 0$ C)
- D) $\lambda^3 3\lambda^2 + 2\lambda 1 = 0$
- Let A be an $n \times n$ non-singular matrix. Then the system Ax = b has: 5.
 - A) unique solution
- B) no solution
- C) two solutions
- infinite number of solutions D)
- Let λ be a eigen velue of an orthogonal matrix A. Then the value of $|\lambda|$ is: 6.
- B) 3
- C) 2
- D)
- Which of the following quadratic form is positive semi-definite? 7.
 - Q(x,y) = xyA)
- B) $Q(x, y) = x^2 y^2$
- $Q(x,y) = x^2 + 2xy + y^2$ D) $Q(x,y) = x^2 + xy$ C)
- If the eigen values of a 3×3 matrix A are 1, -1 and 2. Then determinant of A is: 8.
 - A) 0
- B) 1
- C)
- D) -2
- If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is: 9.
 - A) $\frac{-y}{x^2+y^2}$ B) $\frac{y}{x^2+y^2}$
- C) 0
- D) 1

10.	The v	value of $\int_0^1 \int_{x^2}^{2-}$	-x xydy	vdx is:				
	A)	1 8	B)	$\frac{1}{4}$	C)	3 8	D)	$\frac{3}{4}$
11.	The v	value of $\lim_{(x)}$	<i>c,y</i>)→(2,0	$\left(\frac{y}{x+y-2}\right)$ is:				
	A)	0	B)	1	C)	-1	D)	Does not exist
12.	The a [-2, 2		num va	llue of the fun	ction f	$(x) = x^3 - 2$	$x^2 + 5$	in the interval
	A)	5	B)	4	C)	-11	D)	103 27
13.	The p	partial derivati	ve of	$f(x,y)=x^2y$	$y^3 + x^4$	y with respec	et to x a	at the point (1, 1) is:
	A)	6	B)	4	C)	3	D)	1
14.	The v	value of $\frac{dz}{dt}$ w	hen z =	$= 3x^2y^3$, $x =$	t^4 , y	$=t^2$ is:		
	A)	$33t^{13}$	B)	$42t^{13}$	C)	$33t^{12}$	D)	$42t^{12}$
15.		relative maxim (1, 2)	na of <i>f</i> (B)	$(x,y) = x^3 y^2$ (2, 1)	(12 –) C)	(4, 6) for $x > 2$	> 0, <i>y</i> D)	> 0 occurs at: (6, 4)
16.	The c	eartisian coord	linate o	f (-1, 1) in p	olar co	ordinate syste	m is:	
	A)	$\left(\sqrt{2}, \frac{3\pi}{4}\right)$	B)	$\left(1, \frac{3\pi}{4}\right)$	C)	$\left(\sqrt{2}, \frac{7\pi}{4}\right)$	D)	$\left(1, \frac{7\pi}{4}\right)$
17.	The s	eries: $\sum_{n=1}^{\infty} \frac{1}{2}$	$\frac{2}{x^n+x}$					
	A) B) C) D)	converges for	or all x hen 0 en 0 <	< x < 1 and $< x < 1$ and $< x < 1$	diverg converg	es when $x >$ ges when $x >$	1 1	
18.	The s	equence $\left\{\frac{n}{3^n}\right\}$:					
	A) C)	converges to			conv	verges to $\frac{1}{2}$		
19.	The s	eries $1 + \frac{1}{3} +$	$\frac{1}{2 \times 9} +$	$\frac{1}{3 \times 27} + \frac{1}{4 \times 81}$	con	verges to:		
		ln 2 – 1					D)	$\ln \frac{2}{3}$

	A)	$\frac{1}{(1-x)^{\frac{2}{3}}}$	B)	$\frac{1}{(1+x)^{\frac{2}{3}}}$	J. 27	C)	$\frac{1}{(1-x)^{\frac{3}{2}}}$	D	$\frac{1}{(1+x)^{2}}$	$\frac{3}{2}$
23.	The c	oefficient of	c ² in th B)	e Taylo	r serie	s expar	asion of f	(x) = s	$in^2 x$ about -2	out $x = \frac{\pi}{2}$ is:
24.		$(x) = \begin{cases} x, \\ 1 - x, \end{cases}$								
2	has a	fourier series	expan	sion, th						
		$-\frac{1}{2}$						D)		
25.	the tinA)	ticle moves a me. The comp	onent o	of its ve	locity	in the d	2t, y = 0 2 2	of $2\vec{i} + 1$	$2\vec{j} + k$ at	where t is $t = 1$ is:
26.		$\overline{t)} = 6t\vec{i} + t^2$								
	A)	53	B)	2		C)	51	D)	$\frac{53}{2}$	
27.	partic	acceleration of the when both $\vec{r} = \vec{a}t^3 + \bar{b}$	velocit	y and d	isplace	ment a		time $t =$		
	C)	$\vec{r} = \frac{1}{4}\vec{a}t^3 +$	$\vec{b}t^2$		D)	$\vec{r} = \frac{1}{6}$	$\vec{a}t^3 + \frac{1}{6}\vec{b}$	it ²		
28.	If $\vec{r} =$	$= x\vec{\imath} + \vec{\jmath} + z\vec{k}$	and r	$= \vec{r} $,	then g	rad lo	•			
	A)	0	B)	$\frac{\vec{r}}{r}$		C)	$\frac{\vec{r}}{r^2}$	D	etal as a	
29.	The $\vec{i} - 2$	directional der $\vec{j} + \vec{k}$ is:	ivative	of ϕ (x	(y, z)	$=xy^2$	$z^2 + 4xy$	at (1, 0	, 1) in th	e direction of
	A)	$-\frac{8}{3}$	B)	<u>8</u> 3		C)	$\frac{4}{3}$	D)	$\frac{7}{3}$	
				,	3					

The series $1 + \frac{1}{2^2 \times 3!} + \frac{1}{2^4 \times 5!} + \frac{1}{2^6 \times 7!} + \cdots$ converges to:

The power series expression of $\ln \left(\frac{2x+2}{2x+1}\right)$ valid in the domain:

The series $1 + \frac{2}{1!} \frac{x}{3} + \frac{2 \times 5}{2!} \frac{x^2}{9} + \frac{2 \times 5 \times 8}{3!} \frac{x^3}{27} + \cdots$ converges to:

A) $e^{\frac{1}{2}} - e^{-\frac{1}{2}}$ B) $e^{\frac{1}{2}} - e^{-\frac{1}{2}} - 1$ C) $e^2 - e^{-2} - 2$ D) $e^2 - e^{-2}$

B) $(-1,\infty)$ C) (-1,0) D) $(-\infty,-1) \cup (0,\infty)$

20.

21.

22.

(-1,1)

30.	$\phi(x,$	the direction p	+4ayz	$z - 8z^2x^3$ at (to $z - axis$ is:	(1, 2, -1 :) has a maxin	num dir D)	rectional derivative
31.	A) B) C)	h of the follow $div (\phi f) = curl (\phi f) = curl curl f div curl f = curl f$	$ \phi \nabla \cdot f + \phi \nabla \times f = grad $	$ \vdash \nabla \phi. f $ $ f + \nabla \phi \times f $	f			
32.	The d	ivergence of	-			$\vec{l} + 4z^2 \vec{k}$ at (
33.	The p $y = 1$	particular solution and $\frac{dy}{dx} = 2$	tion of $x = 0$	the initial val 0 is:	ue prob	plem $\frac{d^2y}{dx^2} - 4$	$\frac{dy}{dx} + 4$	y = 0, given that
	A)	$y = xe^{2x}$	B)	$y = e^{2x}$	C)	$y = 4e^{2x}$	D)	$y = (1+x)e^2$
34.	The g	eneral solution	on of x	$x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx}$	$\frac{y}{x} + 4y$	= 0 is:		
		y = (A + B) $y = Ax + Bx$				$Ax + Bx^4$ $Ae^x + Be^{4x}$:	
35.	The p	articular solu	tion of	$\frac{d^2y}{dx^2} - 9\frac{dy}{dx} +$	- 8 <i>y</i> =	$7e^x$ is:		
	A)	$y = xe^x$	B)	$y = 7xe^x$	C)	$y = 9xe^x$	D)	$y = -xe^x$
36.	Which	h of the follow	wing in	itial value pr	oblem	does not pos	sess ur	nique solution?
	A)	$\frac{dy}{dx} = y^2 + y$	³ , give	en y(0) = 1				
	B)	$\frac{dy}{dx} = \frac{x}{y^2 - 4} ,$	given j	y(2) = 0				
	C)	$\frac{dy}{dx} = x \sin y$, given	y(0)=0				
	D)	$\frac{dy}{dx} = \frac{y}{x-1} + $	2x, giv	y(1) = 1	L			
37.	When	$f(x) = \cos$	x is e	expanded as	a fouri	er series of tl	ne forn	n

A) $\frac{\pi}{4}$ B) $\frac{2}{\pi}$ C) $\frac{4}{\pi}$ D) 0

 $a_0 + \sum_{n=1}^{\infty} [a_n \cos nx + b_n \sin nx]$ in the interval $(-\pi, \pi)$, the value of a_0 is:

- The Laplace transform of $t \sin 2t$ is: 38.
 - A)
- $\frac{4s}{(s^2+4)^2}$ B) $\frac{s}{(s^2+4)^2}$ C) $\frac{4}{(s^2+4)^2}$
- D)
- The inverse Laplace transform of $\frac{s^2+3s+6}{s^3}$ is: 39.
 - $1 + t + t^3$ A)
- $1 + 3t + t^2$ C) $1 + t + t^2$ B)
- $1 + 3t + t^3$ D)
- Which of the following property does not hold for Fourier Transforms? 40.
 - If F(s) and G(s) are Fourier transforms of f(x) and g(x) respectively and a, b are constants, then F(af(x) + bg(x)) = aF(s) + bG(s).
 - If F(s) denote the complex Fourier transform of f(x), then B) $F(af(x)) = \frac{1}{a} F(\frac{s}{a}), a \neq 0.$
 - If F(s) denote the complex Fourier transform of f(x), then C) $F(f(x-a)) = e^{isa}F(s).$
 - If F(s) denote the complex Fourier transform of f(x), then D) $F(f(x)\cos ax) = F(s+a) + F(s-a).$
- According to the third law of motion, action and reaction: 41.
 - Always act on the same body but in opposite directions A)
 - Always act on different bodies in opposite directions B)
 - Have same magnitudes and directions C)
 - Act on either body at normal to each other D)
- 42. Parallelogram Law of Forces states, "if two forces acting simultaneously on a particle be represented in magnitude and direction by two adjacent sides of a parallelogram, their resultant may be represented in magnitude and direction by
 - A) its longer side
 - B) its shorter side
 - the diagonal of the parallelogram which does not pass through the point C) of intersection of the forces
 - the diagonal of the parallelogram which passes through the point of D) intersection of the force
- When a body is subjected to two forces, the body will be in equilibrium if the 43. two forces are:
 - Collinear, equal and act in the same direction A)
 - B) Collinear, unequal and opposite
 - Non collinear, equal and opposite C)
 - D) Collinear, equal and opposite

44.	Total A) B) C) D)	Always zero	um of a	all moments of all momen	ts		ar to ea	ch other forces
45.	It is (A) B) C) D)	Sliding fricti Sliding fricti	ion is n on is m on opp	cle with brak nore than slid nore than roll oses motion o	ing fric ing fric on road	tion tion		
46.	on the	ck of mass 0.7 block. If the agnitude of th 0.98 N	coeffic	ient of frictio	n betw	een the block	zontal and the D)	force of 5N e wall is 0.5, 4.9 N
47.	slides		ne and und?	eleased at the Q falls down ground with pefficient of f	freely.	Which will ha	ed plan ave hig	e so that P her velocity
48.	A boo with t A)	dy of mass m l the same veloc Zero	hits nor city. Th B)	mally a rigid te impulse exp mv	wall w perience C)	ith velocity ved by the body	and bo y is: D)	unces back 2 mv
49.	All po A) C)	oints on a rigio Linear accelo Linear veloc	eration	rotating abou B) D)	Angu	d axis have sa lar velocity lar momentur		
50.	At the any ir A)	e instantaneou nstant is: Zero	s centre B)	e of rotation, Maximum	the velo	ocity of the mo	oving l D)	amina at Varying
51.	How A) B) C) D)	does the total Maximum at Maximum at Maximum at It is same ev	the ext	ean position treme position t where poter	n	cuting simple lergy is equal t		
52.	Which oscill A)	h of the follow ations of the p Amplitude	ving cha article? B)	aracteristics r	nust rei	nain constant Velocity	for uno	damped Acceleration

53.	When the body vibrates under the influence of external force, then the body is said to be under:										
	A)	Free vibrations	B)	Natural vibrations							
	C)	Forced vibrations	D)	Damped vibrations	.						
	0)	1 order violations	Δ)	Bumpou viorations							
54.	Quali	ty factor of a damped oscilla	ator is:								
	A) Directly proportional to damping co-efficient										
	B) Inversely proportional to damping co-efficient										
	C) Inversely proportional to amplitude of oscillation										
	D) Directly proportional to amplitude of oscillation										
			. Î								
55.	In cas	In case of forced oscillations, the resonance peak becomes very sharp when the									
	A)	Amplification is small	B)	Damping force is s							
	(C)	Restoring force is small	D)	None of these							
<i></i>	(TD)										
56.	The e	equation of a progressive wa	ve is y	$= 4 \sin (200t - x) w$	here y a	ind x are in					
	metre	es and t in seconds. The amp	olitude (
	A)	1 m B) 2 m		C) 4 m	D)	8 m					
57.	Light	from two ashamant	C								
57.	Light from two coherent sources of same amplitude and wavelength illuminates										
	the screen. The intensity of the central maximum is I. If the sources were incoherent the intensity at the same point will be:										
	A)	I/2 B) I	ne pon		Di	41					
)	22 B) I		C) 2I	D)	4I					
58.	For c	bserving interference in a th	in film	with a light of wave	length) the					
	For observing interference in a thin film with a light of wavelength λ , the thickness of the film:										
	A) I	May be of any magnitude	B)	Should be much sn	naller th	nan λ					
	C) Should be of the order of λ D) Should be a few thousand times λ										
			1, 1								
59.	In a certain region of a thin film, we get 6 fringes with light of wavelength 500 nm.										
	How	many tringes will we get in	the sar	ne region with light	of wave	elength 600	nm?				
	A)	6 B) 5		C) 30	D)	36					
60	****										
60.	Whic	h property of light is confirm									
	A)	Wave nature	B)	Transverse wave n	ature						
	C)	Longitudinal wave nature	D)	Quantum nature							
61	The	Ja Danatia arrant									
61.	1 ne (de Broglie wavelength of ele	ectron a	and proton are the sa	me. Wl	nich quantity	7				
	,,,,,,	oc same for both:									
	A)	Kinetic energy	B)	Accelerating poter	ntial						
	C)	Velocity	(D)	Momentum							
62.	Ifun	certainty in the nocition of	n al								
~ .	mom	certainty in the position of a entum will be:	n electi	ron is zero, the unce	rtainty	in its					
	A)	$< h/4\pi$ B) $>h/4$	7 7	C)							
	- ~)		11	C) zero	D)	Infinite					

63.	63. A material with two of the three dimensions in nano range and the third dimension is large is known as:											
	A)	Micro mat		vii us.	B)	Ouar	ıtum wir	e				
	C)	Quantum (D)		ro materi					
					,							
64.		und is said to		-	-				. 1.0			
	A)	A note of l					the fund		tal fre	quency		
	C)	A note of l	high amp	litude	D)	Man	y harmor	nics				
65.	In a good auditorium, the reverberation time is:											
	A)	Zero										
	B)	Infinite										
	C)	Determine										
	D)	Determine	d by the	numbe	r of pe	rsons p	resent at	any ir	ıstant			
66.	Whic	ch of the follo	owing is	not a p	ropert	y of go	od acous	tic ma	terials	s?		
	A)	They have										
	B)	They are c	omparati	vely ch	neap							
	C)	They are d	_		-							
	D)	They are e	fficient c	over a v	vide fre	equenc	y range					
67.	When crysta called	n an alternati al (quartz), it	ng voltag t starts vi	ge is ap brating	plied of at the	on a pai	ir of opponcy of th	osite f e appl	aces o	of piezoel oltage. Th	lectric nis is	
	A)	ı. Piezoelectı	ric effect		B)	Inver	se Piezo	electri	c effe	ct		
	C)	Magnetost			D)		of these		• • • • • • • • • • • • • • • • • • • •	,		
	C)	Magnetost	riction ci	1001	D)	110110	or mose					
68.	Whic	h of the follo		not a p								
	A)	Directional	lity		B)		chromatic					
	C)	Coherence			D)	High	intensity	,				
69.	In an	optical fiber	, the refra	active i	ndex o	of the cl	ladding r	nateria	al sho	uld be:		
	A)	Less than the	hat of the	core	B)	More	than tha	t of th	e core			
	C)	Very low			D)	Nearl	y unity					
70.	In ho	lography:										
70.	A)	Only phase	of a year	za rafla	oted fr	om the	object is	c raco	rdad o	n the file	m	
	B)	Only ampli					-					
	,										e mm	
	C)	Amplitude		_	orav	vave re	nected 1	rom u	ie obj	ect is		
	D)	recorded on Neither am	olitude n	or phas	se of a	wave r	eflected	from	the ob	ject is		
		recorded on	the film									
71.	The n	umber of sign	nal peaks	obser	ved for	r the hy	drogens	of ne	opent	ane in its		
		spectra will					11		7.5			
	A)	1	B)	2		C)	3		D)	4		

72	 Assertion (A): During galvanisation a Reason (R): Zn has a higher negati 	10 020 020 020								
	A) Both A and R are true and R is B) Both A and R are true but R is	the correct explanation of A not the correct explanation of A								
	C) A is true but R is false									
	D) A is false but R is true									
	M 1									
73.	. Identify the wrong statement among the	ne following:								
	A) Electrochemical corrosion occu	irs when two dissimilar metals are								
	present in an electrolytic mediu	m								
	B) When equilibrium is attained in	side the two half-cells of the								
	electrochemical cells, the net vo	oltage across the electrodes become zero								
	C) Dichrometry is an example for	redox titration								
	D) A photovoltaic cell is an electro									
	,									
74.	Which among the following is an adva	ntage of electroless plating?								
	A) High durability compared.									
	B) Electroless plating does not requ	uire a conductive surface								
	C) Uniform coating can be obtained									
	D) All the above									
	2) I'm the doove									
75.	Given below are the half-cell reactions	of an imaginary alactrochemical call								
75.	Given below are the half-cell reactions of an imaginary electrochemical cell. Emf of this cell will be:									
	$Y^{2+} \rightarrow Y^{3+} + e^{-}$ $E^{\circ}_{X+/X} = -0.71 \text{ V}$									
	$X^+ + e^- \rightarrow X$ $E^{\circ}_{X+/X} = -0.40 \text{ V}$									
	A) $+ 1.02 \text{ V}$ B) $+ 0.31 \text{ V}$	C) -1.02 V D) -0.31 V								
76.	Second overtone in IR spectroscopy ref	fers to a transition from								
	A) $v = 0$ to $v = 1$ B) $v = 0$ to $v = 2$	2 C) $v = 0 \text{ to } v = 3$ D) $v = 0 \text{ to } v = 4$								
	, , , , , , , , , , , , , , , , , , ,	v = 0 to v = 3 D $v = 0 to v = 4$								
77.	Given below are two reactions involvin Reaction I: $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	g ferrous and ferric oxidation states.								
	(D									
	Reaction II: $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$									
	Reaction III: $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$									
	If the E° values of Reaction I and II are	-0.4512 and 0.7806 V respectively, the								
	free energy change for Reaction III will	he:								
	A) SIDIT -									
	A) 54.2 kJ B) 31.8 kJ	C) 11.8 kJ D) 1.63 kJ								
78.	A -1:0: 1	2								
70.	A shift in λ_{max} to higher wavelengths is	known as:								
	A) bathochromic shift B)	hypsochromic shift								
	C) hyperchromic shift D)	hypochromic shift								
7 0		2 Locutounic SUIII								
79.	The number of normal modes of vibration	on of H ₂ O molecule and CO ₂ molecule								
	are respectively:	on of 1120 molecule and CO ₂ molecule								
	A) 3 & 3 B) 4 & 4	and the control of th								
	, ι ω, τ	C) 3 & 4 D) 48-2								

	80.	In A)	¹ H-NMR spectra 1 to 3.5		protons and 5.5 to 8	re observ C)	ed in the ra 9 to 10	ngep D)	opm. > 10		
	0.1	ĺ				,					
	81.	A)	G is a plot of ten ΔT		in the x-a M/dt	exis and - C)	in the y dm/dT	v-axis. D)	mass		
	82.	2. Identify the wrong statement: A) The stationary phase is a solid and the mobile phase is a liquid in paper chromatography									
		B) C) D)	The stational The mobile parts the state	ry phase i phase in c	olumn chi	romatogr	aphy is a lic	quid.		quids	
	83.	Whi A) C)	ich among the fo Laser ablatio Mechanical l	n	B)	Electr	approach in on beam litl I method			sis?	
	84.	The A)	isomerism exis Chain	_	een Diethy osition	ylamine a C)	and Methyl Metameris		nine is: Tautomeris	m	
	85.	The A) C)	IUPAC name o 3-oxohexano 3-formylhexa	icacid	B)	4-oxol	H is: nexanoicaci ylpropanoic				
	86.	The A) B) C)	incorrect states Residual hard soda process Zeolite proce Water treated	lness afte ss can be with zeo	r Zeolite p effectively lite proces	process is	less than the	water			
		D)	salts than in r Zeolite proce			permutit	process				
	87.	The A) B) C) D)	energies of the c Chair > Twist Half-chair > E Boat > Twist- Twist-boat > I	t-boat > B Boat > Tw boat > Ha	oat > Hal vist-boat > alf-chair >	f-chair · Chair · Chair	follows the	order:			
8	38.	Identi A) C)	ify the correct re 1 ppm = 1 mg 10 ppm = 1 mg	/L	garding th B) D)	1 ppm	f hardness = 10 mg/L = 10 ⁶ mg/L				
8	9.	Chlor follow A) C)	ination is a pref ving will affect t Temperature pH	erred met the efficie	thod for diency of the B)	e process	s? f contact	. Which	among the		
		,	4		D_j	I III UIC	above				

90.	Which A) B) C) D)	h of the follow Epoxy Resir Bakelite Urea-Forma Nylon 66	1	not a thermos	etting p	oolymer?		
91.	What A)	is the correct int a;	syntax B)	to declare a v var int a;	ariable C)	in C? int a:	D)	int $a = 10$;
92.	Which	h of the follov int	ving is a	a valid C varia 123variable	able nat C)	me? variable_1	D)	variable-1
93.	What	is the output of int a = 5, b = printf("%d",	= 10;	ollowing code	?			
	A)	5	B)	10	C)	15	D)	None of these
94.	Which	of the follow	ving ope B)	erators is used &	d to get C)	the address	of a varia D)	able in C?
95.		<pre>#include <st 0;="" int="" main()="" pre="" printf("%="" return="" {="" }<=""></st></pre>	dio.h> %d", 5+}			1.5		
96.	A) What (A) C)	45 is the size of a 2 Bytes 8 Bytes	B) an <i>int</i> da	35 ata type in C? B) D)	4 Byte	15 es ends on the	D)	30
97.	#includint mint x	de <stdio.h> nain() { = 10, y = 5; f("%d", x y)</stdio.h>		ollowing code	?			
	A)	2 %	B)	5	(C)	10	D)	15
98.	Which A)	of the follow gets()	ring is u B)	sed to input a scanf()	string C)	in C? printf()	D)	putchar()

```
What will be the output of the following code?
  99.
               #include <stdio.h>
               int main() {
                  int a = 10;
                  if (a < 20) {
                   printf("a is less than 20\n");
                return 0;
               }
        A)
               No output
                                           B)
                                                 a is less than 20
        C)
               Error
                                           D)
                                                 None of these
        Which of the following is not a valid storage class in C?
 100.
        A)
               auto
                             B)
                                    static
                                                 C)
                                                        register
                                                                      D)
                                                                             private
       Which of the following functions is used to compare two strings in C?
 101.
        A)
               strcmp()
                             B)
                                   strcpy()
                                                 C)
                                                        strcat()
                                                                      D)
                                                                             strlen()
       Which of the following statements about functions is true in C?
102.
              A function can have more than one return statement
       A)
       B)
              A function cannot return a value
              A function cannot call another function
       C)
              Functions can only return integer values
       D)
       Which of the following is the correct syntax to declare a constant in C?
103.
              const int a:
       A)
                                          B)
                                                 int const a:
       C)
              Both A and B
                                          D)
                                                 None of these
104.
       What is the output of the following code?
      #include <stdio.h>
      int main() {
         int var = 10;
         int *ptr;
         ptr = &var;
        printf("%d", *ptr);
         return 0;
             Address of var
      A)
                                                10
                                         B)
      C)
             Value of ptr
                                         D)
                                                Error
```

What will be the output of the following code? #include <stdio.h> int main() { int x = 5: int *ptr = &x; *ptr = 10; printf("%d", x); return 0; A) 5 B) 10 C) Address of x DGarbage value Questions 106-112. Read the passage and choose the most appropriate answer from the options provided. Seeing cars with no human inside move through the streets is eerie enough as a pedestrian, but when I'm on my bicycle I often find myself riding alongside them, and from that vantage point you catch the ghostly spectacle of a steering wheel turning without a hand. Since August, driverless cars have been available as taxis hailed through apps but I more often see empty cars than ones with backseat passengers. These robots in the shape of cars don't move like those with human drivers. While I waited next to one at a busy intersection, the vehicle first halted at the yellow light, then rolled into the intersection, where it stopped when the light turned red, confounding the traffic around it. 106. A pedestrian travels -----A) on a bicycle B) by airplane on foot C) D) in a bus or train 107. The word 'eerie' means: A) Unseemly Uncanny C) Incredible D) Incredulous 108. 'Spectacle' refers to: A) Eyeglasses B) Looking glasses C) Visual display D) Virtual despair The steering wheel of driverless cars is ----- to turn without a hand. A) impended B) pretended C) programmed D) pre-programmed The passage mentions that driverless cars are: A) Apps B) Inhuman C) Unmoving D) Robots An 'intersection' might also be called a/an: Interjection B) A) Intervention C) Juncture D) Junction 112. To 'confound' means to:

C)

Prevent

D)

Perplex

Disfigure

A)

Discover

B)

Ques	tions 1	13 -116. Fill in	i the bl	anks, using	the corre	ct options:		
113.	It is I A)	who v am	wrong, B)	not you. are	C)	is	D)	isn't
114.	A)	is a wonderfu Swim	l way o B)	of keeping fi To swim	t. C)	Swimming	D)	Having to swim
115.	Marri A) C)	ed couples nee they will bui they are buil	ld	eela fu B) D)	they s	ether. shall build can be buildin	g	
116.	The tr A)	easure was di is it	scovere B)	ed by Gopal isn't it	,? C)	wasn't it	D)	hadn't it
	ions 11 is giver	. 7-120 . Answe	er the f	ollowing, cl	oosing tl	ne most approj	priate o	of the
117.	Pick th	he correctly s _l fulfil	pelt wo B)	ord: fullfil	(C)	fullfill	D)	fullfell
118.		out the part of te there is no			w that con	ntains an erroi	or ch	oose 'D' to
	He i A	s almost l	like a f		me.	D (No e	error)	
119.	'To be A) B) C) D)	eat around the Avoid speaki Sweepa gard To reveal sec To be unnece	ing abo en free eret info	out an impor of dried lea ormation	ves and l	inpleasant top itter	ic	
120.		ing or remark al or interestin Maxim		has been ma	nde very (often and is th Cliché	erefore D)	not at all
	,							