1,	The indentation mark made on the top of the brick to provide key for holding the mortar is known as:									
	A)	Frog	B)	Pallet		C)	Strike	D)	Valley	
2.	ln a V A) C)	Vicat's appara Square need Needle with	le		B)	Plung		st is:		
3.	For o	ordinary cemer 30 minutes	nt the fi B)	inal settii 1 hour	_	e shou C)	ld be about: 10 hours	D)	24 hours	
4.	Warp A)	o in timber is a Fungi	defect B)	due to: Season	ning	C)	Insects	D)	Conversion	
5.		nation of grey ss salts is calle Efflorescen	ed:	te deposi	ts on t B)		face of bricks	due to	presence of	
	C)	Warping			D)	Float	•			
6.	The A)	vertical sides o Jambs	of open B)	ings of d Reveal		and wi C)	ndows are: Buttresses	D)	Pilasters	
7.	The (A)	covering on th Cornice	e expo B)	sed top o		all: C)	Coping	D)	Cramp	
8.	The (A)	tool used by n Square	nasons B)	to check Spirit			ty of walls: Nicker	D)	Plumb bob	
9.	•	Rubble mason	-	ne Rubble						
	A) C)	Stones are of Mortar is no	•		B) D)		tar is dry e of these			
10.		portion of a bi	rick ob	tained by	cuttii	ng the	brick lengthw	ise into) two	
	A)	Queen close			B)		g closer			
	C)	Bevelled cl	oser		D)	MIII	ed closer			
11.		ect ranging is						line are	: :	
	A)	Very near to		other	B)		intervisible			
	C	Intervisible			D)	Non	e of these			

12.		bearing of a li lled bearin		sured ir	the clo	ockwis	e direction fro	om ma	gnetic north
	A)	Reduced	B)	Whol	le circle	C)	Quadrantal	D)	Fore
13.	A bea A) B) C) D)	nch mark is: Very first so Reference p The last sta None of the	oint wh				wn		
14.	The fA)	irst staff read Fore sight Back sight	ing take	n after	setting B) D)	Interr	leveling instr nediate sight of these	ument	is:
15.	Conto A) C)	our lines will An overhan A deep valle	ging cli		er in cas B) D)		ep hill		
16.	Outpo A) C)	of the comp Object code Both (A) an	,		B) D)	_	level code of these		
17.	Role A) B) C) D)	of the lexical Divide the p Remove cor Remove wh All of these	orogram nment l	into to ines	kens				
18.	Avera A) C)	nge time comp O(nlogn) O(1)	olexity (of bubb	le sort i B) D)	O(n)	of these		
19.	main ({ int a= float c=a/b; printf }	£20, c; b=3; ("%d", c);					6.0	D	0.66
	A)	6	B)	6.6		C)	6.0	D)	0.66

```
20.
       What will be the output of the following code?
       int main()
       int a=6,b=2;
       b=b*(a=10);
       printf ("%d", b);
       return 0;
       1
       A)
              20
                                          B)
                                                 None of these
       C)
              Compilation Error
                                          D)
21.
       Signed character has a range from:
                                                                      D)
                                                                             -255 to +255
                                                        0 to 255
       A)
              0 to 128
                                  -128 to +127 C)
                            B)
22.
       'strncat' string library function is used to:
              Appends first n characters of a string at the end of another
       A)
       B)
              Appends one string at the end of another
              Copies first n characters of one string into another
       C)
       D)
              Compares two strings without regard to case
23.
       What will be the output of the following code?
       main()
       {
       char a[]= "India";
       a++;
       }
       A)
              error, constant pointer cannot change
              error, invalid operator
       B)
              error, I value required
       C)
              None of the above
       D)
       What will be the output of the following code?
24.
       int main()
              int n=10:
              n=20;
              n=n+10;
       printf("%d", n);
       return 0;
       }
       A)
              10
                                          B)
                                                 20
              Compilation error
       \mathbf{C}
                                          D)
                                                 30
```

```
25.
       What will be the output of the following code?
       int main()
       char string1[] = "HELLO";
       char string2[] = "HELLO";
       int j;
      j = stremp( string1, string2 );
      printf( "%d\n", j);
       return 0;
       }
       A)
             -1
                                        B)
       C)
             0
                                              None of these
                                        D)
26.
       What will be the output of the following code?
       void main( )
       printf( 3 + "C PROGRAMMING " );
       return 0:
       }
       A)
             ROGRAMMING
                                        B)
                                              C PROGRAMMING
       C)
             OGRAMMING
                                        D)
                                              GRAMMING
27.
       The function used to open the file:
       A)
             fclose()
                          B)
                                 fread()
                                              C)
                                                     fwrite()
                                                                  D)
                                                                         None of these
28.
       The function used to read the file's contents from memory:
             fgetc()
                          B)
                                 fputc()
                                              C)
                                                     printf()
                                                                  D)
                                                                         scanf()
       A)
      The parameter passing mechanism used in C language:
29.
             Call by value
                                        B)
                                              Call by reference
      A)
             Both (A) and (B)
                                              None of these
                                        D)
      C)
      What will be the output of the following code?
30.
      void main( )
      int i;
      for(i = 0; i < 3; i++);
      printf("%d", i);
      A)
             0,1,2
                                        B)
                                              3
             Compilation error
                                        D)
                                              4
      C)
```

31.	The value of λ for which the system of equations $\lambda x - 4y$	= 6	; 4 <i>x</i>	+ y =	= 2
	3r - v = 5 consistent is:				

- B) 2
- C) -4
- 0 D)

32. The limit of the function
$$f(x, y) = \frac{2xy^2}{x^2 + y^4}$$
 as $(x, y) \rightarrow (0, 0)$ is:

- A)
- infinite B)
- Does not exist

33. Consider the function
$$f(x, y) = \log\left(\frac{1+x}{1-2y}\right)$$
. In which of the following region $f(x, y)$ is continuous?

- $\{(x,y): x + 2y > 0\}$ B) $\{(x,y): y \neq \frac{1}{2}\}$ B) $\{(x,y): y \leq \frac{1}{2}\}$ D) $\{(x,y): y \leq \frac{1}{2}\}$

34. Consider the initial value problem
$$\frac{dy}{dx} = y^2$$
, $y(0) = 1$. In which of the following intervals unique solution exists?

- A) $(-\infty,1)$
- B) $(1, \infty)$
- C)
- $(0,\infty)$ D) $(-\infty,\infty)$

35. The value of x for which the rank of the matrix
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & x \end{bmatrix}$$
 less than 3 is:

- A) -2
- 2 B)
- 1 C)

36. The value of integral
$$\iint_R x dx dy$$
 in the region bounded by the lines $x = 0 : y = 0$ and $x + y = 1$ is:

- A)
- B) $\frac{1}{6}$ C) $\frac{1}{2}$
- D) 1

37. The particular integral of the differential equation
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 6y = x$$

- A) $\frac{1}{5}e^{x}$ B) $-\frac{1}{5}x$ C) $-\frac{1}{5}e^{x}$ D) $\frac{1}{5}x$

Which of the following is an eigen vector corresponding to an eigen value of the matrix
$$A = \begin{bmatrix} 4 & -5 \\ 1 & -2 \end{bmatrix}$$
 is:

- A) $\binom{1}{5}$
- B) $\binom{5}{-1}$ C) $\binom{-1}{5}$
- D)

- The general solution of the differential equation $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 13y = 0$ is: 39.
 - $e^{-2x}(A\cos 3x + B\sin 3x)$
 - $e^{-3x}(A\cos 2x + B\sin 2x)$
 - $e^{2x}(A\cos 3x + B\sin 3x)$ C)
 - $e^{3x}(A\cos 2x + B\sin 2x)$
- Suppose $\omega = \sqrt{x^2 + y^2}$; $x = \cos \theta$; $y = \sin \theta$. The value of $\frac{d\omega}{d\theta}$ at $\theta = \frac{\pi}{2}$ is: 40.
 - A) 1
- B) 0
- C)
- D) 2
- The critical point of $f(x,y) = x^2 + xy y^2 4x + 3y 1$ is: A) (2, 1) B) (-1, 2) C) (1, 3) D 41.

- (1, 2)
- The middle term in the Taylor series expansion of $\left(2x \frac{1}{3x^2}\right)^6$ is: A) $-\frac{40}{9x^3}$ B) $\frac{40}{9x^3}$ C) $-\frac{10}{9x^3}$ D) $\frac{40x^3}{9}$ 42.

- A particle moves along the curve whose parametric equations are given by $x = t^2 1$, 43. y = 2t and $z = t^2 - 1$, where t denotes the time. The acceleration at t = 1 is:
 - $2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$
- $\hat{\imath} 2\hat{\imath} + 2\hat{k}$ B)

C) $2\hat{i} + 2\hat{j}$

- $2\hat{\imath} + 2\hat{k}$ D)
- The particular solution of the differential equation $\frac{d^2y}{dx^2} y = e^x \sin x$ is: 44.
 - A) $-\frac{e^x(2\cos x \sin x)}{5}$
- B) $\frac{e^x(2 \cos x + \sin x)}{5}$
- C) $\frac{e^x(2\cos x \sin x)}{5}$
- D) $-\frac{e^x(2\cos x + \sin x)}{5}$
- The unit tangent vector at the point $(0,2,\frac{\pi}{2})$ on the curve $\bar{r}=2\cos\theta\,\hat{\imath}+2\sin\theta\,\hat{\jmath}+2\theta\,\hat{k}$ is: 45.

- B) $\frac{\hat{\imath}+\hat{k}}{\sqrt{2}}$ C) $\frac{\hat{\imath}-\hat{k}}{\sqrt{2}}$ D) $\frac{\hat{\imath}+\hat{\jmath}+\hat{k}}{\sqrt{3}}$
- The series $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$ is: 46.
 - Divergent A)

- B) Converges to $\frac{1}{3}$
- Converges to 0 C)
- D) Converges to $\frac{1}{4}$

47.	Lapla	nce transform	of sin²	3t is:					
	A)	$\frac{18}{s(s^2-36)}$	B)	$\frac{18}{s(s^2+3)}$	(6)	C)	$\frac{12}{s(s^2-36)}$	D)	$\frac{24}{s(s^2+36)}$
48.	If \vec{A} =	$=2t^2\hat{i}+(t^2$	$+1)\hat{j}$	$\vdash t \widehat{k}$ and	$d\vec{B} =$	$t\hat{i} + t$	$^{2}\hat{j}+\widehat{k}$, the n	nodulus	s of $\frac{d}{dt}(A \times$
	at $t = A$	= 0 is:	B)	$\sqrt{2}$		C)	0	D)	$\frac{1}{\sqrt{2}}$
49.	If $\vec{r}=$	$=x\hat{i}+y\hat{j}+z$	\hat{k} , then	grad $ \vec{r} $, who	ere r =	$= \vec{r} $ is:		
	A)	$\frac{\vec{r}}{r}$	B)	$ec{r}$		C)	$\frac{\vec{r}}{r^2}$	D)	$-\frac{\vec{r}}{2r^2}$
50.	A) B) C)	ch of the following curl $(\vec{A} + \vec{A} + \vec{A})$ curl $(\phi \vec{A})$ curl $(\phi \vec{A})$	$(\vec{B}) = c\vec{B}$ $(\vec{B}) = di\vec{B}$ $(\vec{B}) = (\vec{B})$	url Å + v Å x di dφ)x Å	curl Ē v B				
51.	chuci A)	k?	chuck		B)	Face	chine is knov plate jaws chuck	wn as ur	niversal
52.	A) B) C)	Stereo lith	ography l object i ind wirii	apparat manufac ng	us turing		pid prototypi	ng syste	em?
53.	Which A)	ch of this join Explosion Brazing	ning pro welding	cess is a	ssocia B) D)	Sold	th welding of lering rmit welding		etals?
54.	The tooth A)	extrusion pro n paste tubes, Indirect ex Hydro stat	trusion	ins etc.;	nufact B) D)	Dire	short length of ect extrusion tinuous extru		ents like
55.	Which A)	ch one of the C r ossed be V belt driv	elt heat d	ng is a p drive	ositivo B) D)	e drive Rop			

xB)

56.	Blov A) C)	v holes in casting are caused Excessive moisture Excessive fine grain	by: B) D)	Low permeability None of these	
57.	Wha adial	t is the temperature at which batically?	air ca	n be brought to saturation state	
	A) C)	Thermodynamic WBT Thermodynamic DPT	B) D)	Thermodynamic DBT DPT	
58.	Which A)	ch one of the following is no Reciprocating pump Vane pump	ot a pos B) D)	itive displacement pump? Centrifugal pump Gear pump	
59.	If the coeff	e coefficient of performance ficient of performance of the 0.2 B) 3	of a he	eat pump is 5, then what is the value of erator operating under same condition? C) 4 D) 6	
60.	Whice	ch type of heat system is bes ust emission?	t suited	I for low fuel combustion and reduce	
	A) C)	In line pump system Distributor pump system	B) D)	Rotary pump system CRDI system	
61.	Which A) B) C) D)	Chemical composition of a Specific heat of working f Heat loss to the surrounding	air doe luid vang is ne	arding assumption of Air standard cycles not vary with temperature ries with temperature egligible with temperature	:?
62.	Otto A) B) C) D)	cycle is the: Air standard cycle of CI end Air standard cycle of SI end Vapour power cycle of CI Vapour power cycle of SI	ngine engine		
63.	Turn A) C)	ing, Facing and Parting oper Drilling machine Shaper	ations B) D)	are usually done with the help of a Lathe Milling machine	
64.	MPF A) B) C)	I stands for: Multi Phase Fuel Injection Mixed Phase Fuel Injection Multi Point Fuel Injection Mixed Point Fuel Injection	n		

65.	What A) B) C) D)	Variation in Pumping Exhaust blo	s the major loss in C I engine? Variation in specific heat and chemical equilibrium Pumping Exhaust blow down Incomplete combustion						
66.	is A) C)	an energy dis Vacuum dio Capacitor	ssipatin de	ig comp	onent. B) D)	Indu Resi			
67.	Toler A)	ance limit of $\pm 1\%$	gold ba B)	nd in a ± 10%		is: C)	± 5%	D)	± 20%
68.	Unit (A)	of Inductance Mho	: B)	Henry	,	C)	Farad	D)	Ohms
69.		nternal imped nt source are: Low and Hi ∞ and 0		fideal v	oltage : B) D)	0 and		ad imped	ance of ideal
70.	In a c A) C)	onstant voltag Reverse bias Inverted mo	sed	ce, Zene	er diode B) D)	Forw	nnected in- vard biased e of these	cond	ition.
71.	The r called A)	esistance offe l: Dynamic Re Static Resist	esistanc		B) D)	Inver	n forward b rse Resistan tance		dition is
72.		Inverse Volta and V_m and 0.5 V_m and 2 V_r	I_{m}	/) for a	centre t B) D)	$2V_{m}$	l and bridge and $ m V_m$ and $ m V_m$	ed full wa	ve rectifier
73.	Dopii A)	ng concentrati $E > C > B$		ransistor E > C		C)	E < C < I	B D)	E < C > B
74.	The b Junct A) B) C) D)	piased condition and C Reverse bias Reverse bias Forward bia Forward bia	CB Junc sed, For sed, Res sed, Fo	ction rward bi verse bi rward b	iased ased iased	erate	it in inverse	e mode aı	re EB

75.	To w	To work transistor as an amplifier, the Q-Point is fixed at											
	A)	Cut-off regi	on of D	C Load	Line								
	B)	Saturation re				ne							
	C)	Midpoint of											
	D) None of these												
76.	Most	t widely used t d:	biasing	circuit	which	makes	Q-Point inde	pendent	of β is				
	A)	Voltage div	ider bia	s circui	t								
	B)	Voltage divider bias circuit Fixed bias circuit											
	C)												
	D)	Collector to	base bi	ias circu	iit	101							
77.	Effic	eiency and Rip	nle fact	tor of fi	ıll way	e rectifi	ier are:						
	A)	81.2% and		.01 01 10	B)		6 and 0.482						
	C)	40.6% and			D)		6 and 0.482						
78.	In	the amplitu al.	de of ca	arrier w	ave is	varied v	with that of t	he modu	ılating				
	A)	Phase Modu	ılation		B)	Freau	ency Modul	ation					
	C)	Amplitude I		tion	D)	-	Modulation						
79.	In pl A) B) C) D)	_	t of both I to both t of the	h ampli h ampli amplitt	tude ar tude ar ide and	nd frequ nd frequ I propon		-	*				
80.	Max A)	imum efficien Hexagonal	•			ne shape C)		is: D)	None of these				
81.	Pow	er absorbed in	a purel	ly induc	tive ci	rcuit is:							
	A)	Zero	B)	Maxi	mum	C)	Infinite	D)	Normal				
82.	The	capacitive read		of a circ	uit is -								
	A)	Independen			B)		sely proporti	onal to					
	C)	Directly pro	portion	al to	D)	None	of these						
83.	An a	lternating volt	_					_	e will be:				
	A)	70.7 V	B)	50 V		C)	63.7 V	D)	100 V				
84.		trical applianc		connecte	ed in pa	arallel b	oecause it	·					
	(A)	Is simple cir											
	B)	Draws less											
	C)		•	on of ap	pliance	s indep	endent of ea	ich other	•				
	D)	None of the	CP.										

85.	Kirchl A) C)	hoff's current Closed loops Electric circu	in a no	applica etwork	ble to (B) D)	Electronics circuits			
86.	One k A)	Wh of electric 735.5 W	cal ener B)	rgy equ 860 kg		rly: C)	3600W	D)	4186J
87.	Unit o	of magnetic flu Weber	ıx is: B)	AT/m		C)	Tesla	D)	Henry
88.	Relati A)	ve permeabili 4π x 10 ⁻⁷ H		acuum i	is: B)	$\frac{1}{4}H/r$	n		
	C)	1			D)	0			
89.	The dA)	irection of ind KCL KVL	luced e	mf can	be four B) D)	Farad	by using: ay's Law s Law		
90.	The p A)	ower in an ac VI cosφ	circuit B)	is giver VI sin		C)	I^2Z	D)	I^2X_L
91.	The p A) C)	power factor of an R-C circuit is: Always zero B) Between zero and 1 Always unity D) Between zero and -1							
92.	In a d	elta-connected ge V _{ph} is:	d syster	n, the re	elation	betwee	en the line vo	oltage V	L and phase
	A) C)	$V_{L} = \sqrt{3} V_{ph}$ $V_{L} = V_{ph}$			B) D)	$V_L = Y_L$ None	$V_{\rm ph}/\sqrt{3}$ of these		
93.	The PA)	eak factor of a	a sinuso B)	oidal wa 1.11	ave is:	C)	2	D)	1.5
94.	The e	xpression for	energy	stored i	in an in	ductor	is given by:		
	A)	$\frac{LI^2}{2}$	B)	<u>LI</u>		C)	LI ²	D)	LI
95.	The v A) B) C) D)	alue of coeffic Perfectly ma Magnetically Ideal magnet None of thes	gnetic o isolate tic coil	coupled	coils	s zero	for:		

Questions 96-100. Read the passage and choose the most appropriate answer from the options provided.

Dogs can help identify physical illnesses. Although it's still not well understood, their uncanny sense of smell has enabled them to perform feats like sniffing out breast cancer in people's breath or bladder cancer in their urine. Dogs are in widespread use today in airports as a cost-effective way to find hidden drugs and bomb residue.

96.	Some A) C)	dogs can assis oncologists diagnostician		 B) D)	surgeo therap			
97.	Their :	sense of smell untaught	is <i>unce</i> B)	anny. The wo	rd 'unc C)	anny' means: mysterious	D)	untrained
98.	To 'sn A)	iff out' means discover	s to use B)	the sense of s	smell to	osomethin restore	g. D)	respire
99.	Dogs (A)	are employed defend	at airpo B)	orts to help comprehend	smı C)	agglers and ten	rrorists. D)	offend
100.	It isA)	expensive less	to use a	a dog for this more	purpos C)	e at an airport equally	than a D)	human being. least
Quest provid	ions 10 led:	1 & 102 . Fill	in the	blanks, choos	ing the	most appropr	iate of	the options
101.	'Let's A)	begin?' will we	B)	shall we	C)	at all	D)	at now
102.	I need A)	l furnitu a lot	ire for i B)	ny office. a few	C)	some	D)	many
103.	ʻI'm l A)	ooking forwar Exception	d to the	e trip.' The ph Excursion	nrase 'le C)	ooking forwar Anticipation		gests: Precision
104.	Pick t there Jagan A)	-	sentence in the e tall	ce that contain sentence: for his age. C)		ljective, or pic		indicate
105.	Pick t A)	he wrongly sp strength	oelt wor B)	rd: straitjacket	C)	sapphire	D)	succesive

1]	A) The ren B) The C) The	of a body is e property by noval of load e ratio of stre e resistance t ge deformat	y which a I ess to stra to the for	nin		s to its origir	al shape	after the
10	p a:	roportions s per:	al to the sine	of the a	ngle be	tween	the other tw	o". This	ach force is statement is
	A C		dition of equ of moments	uilibrium s	B) D)		ni's theorem ignon's theo		
10	8. Po A C)		atio is: o of load to so of stress to		B) D)		io of strain to		ongitudinal si
109	A) B) C) D)	Carri Carri Has a Is par	plane is a ples only norres maximum inclinationallel to x-ax	mal stress n shear st n of 45 ⁰ t is	s and no tress to x-axi	S	r stress		
110.	. Wh A)	uch of the Energ	e following in the following is given by B)	is a scalar Mome	r quant entum	ity? C)	Torque	D)	Impulse
111.	Isot A) B) C) D)	Obeys	g same elasi	ulus equa w upto fa	al to M	all dir odulus	ections s of Rigidity	,	
112.	The A)	compone Zero	nt of a force B)	P at righ Half	nt angle	es to it C)	s direction s	will be: D)	1.414 P
113.	C)	Coplana	ich meet at ar forces ar forces		B) D)	Conci None	irrent forces of these		
114.	The c	entroid of h/4	f a right ang B)	gled trian h/2	gle of I	neight C)	h is at a he h/3	ight of D)	from base.

115.	Angle A) B) C) D)	of repose is: Less than angle of friction Equal to angle of friction More than angle of friction None of these	ı	
116.	The nA)	umber of oscillations per sec Time period Frequency	cond is B) D)	known as: Phase Difference Amplitude
117.	The po	eriod of oscillation of a simp Mass of the bob Density of the string	ple pen B) D)	dulum depends upon: Diameter of the bob Length of the pendulum
118.	In terr A) C)	ns of work, Power is define Quantity of work Capacity of doing work	d as: B) D)	Rate of doing work Rate of change of doing work
119.	The st A) B) C) D)	um of kinetic energy and po Varies from point to point Is constant at all points Is maximum at start and the Is minimum at start and the	en will	decrease
120.	The lo	ocus of all instantaneous cer Moment of inertia Centre of gravity	ntres of B) D)	rotation is called: Centrode Centre of pressure

120 MINUTES

1.	The system of linear equations $x + y + z = 0$; $2x + y + z = 0$; $x + y + kz = 0$
	has non trivial solution if:

- A) k = 1
- B) k = -1 C) k = 2
- D) k = -2

- The rank of the matrix $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 4 & 7 \\ 1 & 1 & 3 \end{bmatrix}$ is: 2.
 - A) 1

B)

C) 2

- None of these D)
- The eigen vector corresponding to the eigen value $\lambda = 1$ for the matrix 3. $A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix}$ is:
 - A) $\binom{1}{1}$
 - B) $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ C) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
- D) $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$
- 4. The quadratic form q(X) that corresponds to the symmetric matrix $A = \begin{pmatrix} 5 & -3 \\ -3 & 7 \end{pmatrix}$ is:
 - A) $5x^2 3xy + 7y^2$
- B) $5x^2 6xy 7y^2$

 $5x^2 - 6xy + 7y^2$ C)

- D) $5x^2 + 6xy + 7y^2$
- Consider the function $f(x, y) = \frac{x^3y^2}{1-xy}$. Then which of the following is true? 5.
 - f(x, y) is continuous every where
 - f(x, y) is continuous only at (0, 0)B)
 - f(x, y) is nowhere continuous C)
 - None of these D)
- If $f(x,y) = x^2 y^3 + x^4 y$, then $\frac{\partial^2 f}{\partial x^2}$ is: 6.
 - $A) \qquad 2y^3 + 12x^2y$
- B) $6x^2y$
- C) $2xy^3 + 4x^2y$
- D) $6xv^2 + 4x^3$

7.	The va	alue of integra	$\int_0^1 \int^2$	$\frac{1}{3}y^2 x dx dy$ is	:			
	A)	$\frac{5}{6}$	B)	$\frac{-1}{2}$	C)	$\frac{-5}{6}$	D)	$\frac{1}{2}$
8.	The ar	rea of the regi	on encl	losed by the cu	irve r :	$= \sin 3\theta$ is:		
	A)	$\frac{\pi}{4}$	B)	$\frac{\pi}{6}$	C)	$\frac{\pi}{2}$	D)	$\frac{\pi}{3}$
9.	The se	eries $\sum_{n=1}^{\infty} \frac{n+1}{n}$	+2 p conv	erges only for	:			
	A)	$p \ge 2$	B)	p < 2	C)	p > 2	D)	$p \le 2$
10.	The p	ower series ex	pansio	n of $\frac{1}{(1+x)(2+x)}$	(3-2x)	valid in the d	omain:	
	A)	x < 1	B)	x > 1	C)	x > 2	D)	x < 2
11.	The co $x = 1$		<i>x</i> – 1)	¹⁵ in the Taylo	or serie	s expansion of	$\frac{1}{x}$ ab	out
	A)	$-\frac{1}{2^{15}}$	B)	1 2 ¹⁵	C)	$\frac{1}{2^{16}}$	D)	$-\frac{1}{2^{16}}$
12.	The co	onstant term is	n the fo	ourier series ex	kpansio	n of $x - x^2$ in	$-\pi$ <	$x < \pi$ is:
	A)	$\frac{2}{3}\pi^2$	B)	$-\frac{2}{3}\pi^2$	C)	$\frac{1}{3}\pi^2$	D)	$-\frac{1}{3}\pi^2$
13.						$(t^2 - t)\hat{\imath} + (t^2$ acceleration a		
	A)	2	B)	3	C)	$\sqrt{11}$	D)	$2\sqrt{2}$
14.		irectional deri			$=\frac{x}{y+z}$ a	t the point (1,	1, 1) iı	n the
15.	If F is true?	$-\frac{1}{2}$ a vector field $\operatorname{curl}(\phi F) =$	l and ϕ	a scalar funct	C) tion the	$\frac{1}{4}$ en which of the	D) e follov	$-\frac{1}{4}$ ving is

 $\operatorname{curl} (\phi F) = \phi \operatorname{curl} F + \nabla \phi \times F$

 $\operatorname{div}\left(\operatorname{curl} F\right) = F$

 $\operatorname{div}(\phi F) = \phi \operatorname{div} F$

B)

C)

D)

16.						$y = 3 \cos 3$		sin 2t
	A)	$2\sqrt{3}$	B)	$2\sqrt{5}$	C)	$2\sqrt{10}$	D)	0
17.	The	particular i	nteoral of	the differen	atial aquat	$\int_{0}^{\infty} \frac{d^2y}{x^2} = 3$	$\frac{dy}{dy} + 2y =$	$=e^{5x}$

17. The particular integral of the differential equation
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{5x}$$

A)
$$\frac{e^{5x}}{4}$$
 B) $\frac{e^{2x}}{12}$ C) $\frac{e^{5x}}{8}$ D) $\frac{e^{5x}}{12}$

18. Which of the following differential equation is linear?

A)
$$y \frac{d^2y}{dx^2} + \frac{dy}{dx} = 2x$$
 B) $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = e^x$

C)
$$2 \frac{d^2y}{dx^2} - 4 \left(\frac{dy}{dx}\right)^2 + 6y = 0$$
 D) None of these

19. Laplace transform of t^3e^{3t} is:

A)
$$\frac{3}{(s-3)^3}$$
 B) $\frac{6}{(s-3)^3}$ C) $\frac{6}{(s-3)^4}$ D) $\frac{3}{(s-3)^4}$

20. The inverse Laplace transform of $\frac{1}{(s-2)^2+4}$ is:

A)
$$e^{2t} \sin 2t$$
 B) $\frac{e^{2t} \sin 2t}{2}$

C)
$$e^{2t}\cos 2t$$
 D) $\frac{e^{2t}\cos 2t}{4}$

Read the passage below and choose the most appropriate answer from the options provided for questions 21-25.

Hit by debris

The James Webb Space Telescope has been hit by a micrometeoroid. NASA says the strike to one of the telescope's primary mirror segments will not affect its performance. The space telescope was engineered to withstand micrometeoroid impacts, although the micrometeoroid strike was larger than scientists had modelled.

21. The word 'debris' is correctly pronounced to rhyme with:

A) defreeze B) disease C) degree D) decry

22. The 'space telescope' is located:
A) in outer space

C)

in outer space B) on Earth on another planet D) in a laboratory

23. A 'micrometeoroid' is smaller than even: (select the smallest of these)
A) an asteroid B) a meteor

C) a comet D) a meteoroid

24.	The term 'NASA' is: (choose the most suitable option)											
	A) C)	an oxymoron a contraction			B) D)		pansion ronym					
25.	The mo	eaning of the w	vord 'w B)	ithstand resist	' :	C)	persist	D)	cubaiat			
							,		subsist			
Fill in quest	the bla ions 26 -	nks, choosing – 28.	the mo	st appr	opria	te one fi	rom the optior	is prov	ided for			
26.		are some extra	pencils	on my	table i	f you	them.					
	A)	wish	B)	need		C)	have	D)	take			
27.	Please A)	turn the volum	ne B)	a little of	e, it's t	too loud C)	up	D)	down			
28.	What's A) C)	s he saying, is he know you	?		B) D)	isn't l do yo	ne u know					
29.	Pick th A)	ne incorrectly s improvice	pelt wo B)	ord: illogic	al	C)	imaginary	D)	envelope			
30.	in it:		entence ast nigl R		ntains a	an error,	, or point out if	there's	no error			
	A)	P	B)	Q		C)	R	D)	No error			
31.	Kirchl A) C)	noff's Current l Energy Flux	aw is b	ased on	the lav B) D)	Charg						
32.	The In A)	ductor doesn't Voltage	allow s B)	sudden o Power	_	es in C)	Resistance	D)	Current			
33.	The ex	epression for e	nergy st	tored in	capaci	itor is gi	ven by:					
	A)	$\frac{CV^2}{2}$	B)	$\frac{CV}{2}$		C)	CV^2	D)	CV			
34.	AT/m A) C)	is the unit of: Mmf Magnetic fiel	d stren	gth	B) D)		ctance netic flux dens	ity				
35.	The un A)	nit of inductive AT/m	reactar B)	nce is: Ohm		C)	N/Wb	D)	Henry			

36.	If the betwe	coefficient of co	oupling	betwee	n two c	o coils is increased, mutual inductance						
	A)	Is increased			B)	Is deci	reased					
	C)	Remains uncl	nanged		D)	None	of the above					
37.	The S	I unit of energy	is:					D)	m-kg			
	A)	Joule	B)	kWh		C)	kcal	D)	III-Kg			
38.	The d	irection of induc	ced em	f can be		out by i	ising:					
	A)	KCL			B)		ay's laws					
	C)	KVL			D)	Lenz's	s Law					
39.	ln an a	ac circuit kW/ k	VA rep	resents	fa	actor.		D)	Power			
	A)	Form	B)	Peak		C)	Diversity	D)	rowei			
40.	The p	ower dissipated	in an a	c purely	y capaci	itive cir	cuit is:					
	A)	Maximum			B)	Zero						
	C)	Depend on cu	rrent		D)	Deper	nd on frequen	су				
41.		es ac circuit has	s R = 2	Ω and Ω	XL = 3Q	Ω. It wi	ll be expresse	d in the				
		$(-2-j3)\Omega$			B)	(- 2 -	$+ j 3) \Omega$					
		$(2+j3)\Omega$,	(2-j)						
	,					` ,						
42.	In a star-connected system, the relation between the line voltage V_L and phase voltage V_{ph} is:											
	A)	$V_L = \sqrt{3} \ V_{ph}$			B)	$V_L =$	$V_{ph}/\sqrt{3}$					
	C)	$V_L = V_{ph}$			D)	None	of these					
43.	Analı	ternating voltag	e is giv	en by v	r = 200	sin31	4 t. Its r.m.s v	alue wil	be:			
75.	A)	100 V	B)	282.8		C)	141.4 V	D)	121.4 V			
44.	The a	lgebraic sum of	instan	taneous	phase v	voltages	in a three-ph	ase circu	it is equal			
	A)	Zero			B)	Line	voltage					
	C)	Phase voltage	;		D)		of these					
45.	The f	orm factor of a	sinusoi	dal waw	e is							
10.	A)	1.414	B)	1.11		C)	2	D)	1.5			
46.	A rol	A roll of copper wire of length one kilometer has a resistance of 5Ω . If the copper wire is stretched to five times the actual length, the new resistance will be										
		25Ω	5 Ω		C)							
	A)	23 22	B)	J \$4		C)	125Ω	D)	1Ω			

47.	As ten A) B) C) D)	decreases increases initially dec	reases, th	verse saturation en increases en decreases	on currer	nt of a p-n ju	nction dio	de	
48.	For a locurren	bipolar juncti t if the base o	on transis	stor, current ga 10 µA?	ain α is (0.99. What v	vill be the	emitter	
	A)	1 mA	B)	9.9 mA	(C)	99 μΑ	D)	10 mA	
49.	For the A)	e saturation n Emitter-Bas reverse bias	se junctio	peration of a I n is forward b	BJT, wh iased an	ich of the fold	llowing is Base junct	true? ion is	
	B)	Emitter-Bas forward bia	se junctio sed	n is reverse bi	ased and	d Collector-E	Base juncti	on is	
	C)	Both Emitte biased	er-Base ju	unction and Co	ollector-	Base junction	ns are forv	vard	
	D)		er-Base jı	unction and Co	ollector-	Base junction	ns are reve	erse	
50.	What doubl	happens to thed?	ne capacit	ance value if t	he total	charge giver	n to the cap	pacitor is	
	A) C)	Doubled Quadrupled	l	B) D)	Halve Rema	ed ains same			
51.	rectif.	ier. The outpi	it rippie i			it to a centre	-tapped ful	ll wave	
	A)	150 Hz	B)	300 Hz	C)	600 Hz	D)	900 Hz	
52.	Whic A) B) C) D)	Changes in Changes in Changes in	load cum load cum load cum	arding Zener sirent causes charent causes charent causes charent will not at	anges in anges in	Zener current Zener voltag	nt ge voltage and	d current	
53.	The f A) B) C) D)	Thermal st To decreas	the emit ability of e the emi	stance in volta ter current operating poin tter-base volta tter-base volta	nt ige	ler biasing ci	rcuit is:		
54.	In a p frequ	oublic address sencies of the	s system, sound?	which of the f	followin	g unit is used	d to alter sp	pecific	
	A) ¹	Fader	В)	Delay unit	C)	Equalizer	D)	Limiter	

55.	Which of the following statement regarding electronic instrumentation system is													
	true? A)	connects then	i to one	measuri	ng inst	rument.	g inputs and se		ly					
	B)	A multipleyer	has ha	lancing of	circuits	and cal	ibrating eleme	ents.						
	C)	A multiplexe	accept	s analog	input a	ind sequ	entially conne	ects then	1 to					
	C,)	- multiple meas	anrino i	nstrumet	its.									
	D)	A multiplexe	accept	s multip	le analo	og input	s and sequenti	ally con	nects					
	υ,	them to one n	neasurii	ng instru	ment.	,								
56.	The re	esponsibility of orks is:	Mobile	e Switchi	ng Cer	itre (MS	SC) in cellular	telephor	ne					
	A)	Connects mo	bile dev	rices to the	he netv	vork								
		B) Routing calls to mobile units as well as to the local telephone system												
		C) Signalling and access to the SIM card												
	D)	Control of on					ions							
57.	The F	requency Mod	ulation	(FM) bro	adcast	ing ban	d in India is:							
	A)	6 MHz – 22 I			B)		Hz – 1650 kHz							
	C)	2.4 GHz - 3.0	6 GHz		D)	88 MI	Hz – 108 MHz							
58.		function of mixe	er in a s	uper hete	erodyne	e radio r	receiver is:	ved fred	nency					
	A)													
	B)	Combine the	ampliti	ude value	es of in	coming	signais.	ina cian	alc					
	C)						ne set of incom	iiig sigii	ais.					
	D)	Amplificatio	n of int	ermediat	e frequ	ency.								
59.	The advantage of using frequency reuse in mobile communication systems is: A) Increase the quality of output signal													
	A)	Increase the	quanty bandwi	dth of in	dividus	lusers								
	B)	Increase the				ii useis								
	C) D)	Decrease the	noise l	evel of the	ne system	em								
60.		antenna is an ex	kample	of wire a	intenna									
	A)	Horn			B)	Dipol	e							
	C)	Spiral			D)	Yagi-	Uda							
61.	Wha	t is the initial se												
	A)	1 hr	B)	15 mi	nutes	C)	30 minutes	D)	10 hrs					
62.		y window is a r						11						
	A)	Is provided a			B)		parallel to the							
	C)	Embeds insi-	ae the v	vali	D)	Proje	ct outside the	wall						
63.		member which					•	В.	т 1.					
	A)	Transom	B)	Top ra	all	C)	Mullion	D)	Ledge					

64.	The standard size of Brick is?											
	A)	190mm x 90mm x 90mn		B)	200m	m x 100mm x	100mm					
	C)	210mm x 90mm x 90mn	n]	D)	200m	m x 90mm x 9	0 mm					
65.	The co	ommonly used lime in whi	ite wa	shing i	s:							
	A)	White lime		В)	Fat lin	ne						
	C)	Hydraulic lime		D)	Quick	lime						
66.	Damp	ness causes:										
	A) 1	Bleaching of paints		B)	Crum	bling of plaster						
	C)	Efflorescence		D)		th of termites	.					
67.	In abr	asion test, what material is	s place	ed in a	ddition	to the specime	en in the	testing				
	A)	Metal piece		B)	Stone	piece smaller	than ana	oim on				
	C)	Cast iron ball		D)		ess steel ball	man spe	Cilien				
68.	The h A) B) C) D)	igh strength of rapid harde Burning at high tempera Increased lime cement Finer grinding Higher content of tricald	iture	cement	at ear	ly stage is due	to its:					
69.	What	effect does bulking have	on fres	sh cond	crete?							
	A)	Strength reduces		B)		kage increases						
	C)	Volume reduces		D)		ability increase	es					
70.	Type a con	of combined footing cons crete beam is called	isting footi	of two	or mo	re column foot	ing con	nected by				
	A)	- ·	trap	<i>O</i>	C)	Mat	D)	Trapezoidal				
71.	Whic	h of the following is a pro	perty	of Fat	Lime?							
	A)	Shakes very slowly		B)		ains clay						
	C)	High degree of plasticity	у	D)		binding proper	ty					
72.	Whic	th of the following ions ca	uses tl	he cem	ent to	set quickly?						
	A)		Carbon		C)	Chloride	D)	Nitrate				
73.	The b	base in paint does not serve	e the f	functio	n of:							
	A)	Durability		B)	Hard	and elastic						
	C)	Protection against UV r	ays	D)	Catal							
74.		is not an example of sedin	nentar	y rock								
	A)	-	Limest	•	C)	Shale	D)	Marble				
75.	Who	invented cement?										
	A)	Joseph Aspidin		B)	Le –	chatelier						
	C)	Joseph priestly		D)	Karl	von terzaghi						

76.	Which	h is true for an $\Delta W = 0$	adiabat B)	tic process $\Delta S = 0$		C)	$\Delta Q = 0$	D)	$\Delta T = 0$					
77.	percei	It is desired to increase the efficiency of a Carnot engine operating between a high temperature reservoir at 700 K and a low temperature reservoir at 350 K by 20 percent excess of the current efficiency. If the low temperature reservoir remains constant, then temperature of the high temperature reservoir must be:												
	A)	985 K	B)	975 K		C)	885 K	D)	875 K					
78.	In a D	piesel cycle, the	e worki	ng fluid r	eiects	heat dur	ino [.]							
	A)	Isochoric pro	cess	ng mara r	B)	Isobar	ic process							
	C)	Isentropic pr	ocess		D)		rmal process	,						
79.	Whiel	h among the fo	llowing	ria mat tu	10 for	- CDDI								
	A)	A low pressu	re feed	numm ia	ue for	a CKDI	engine?							
	B)	A high press	ure need	pump is i	require	ea								
	C)	Common rai	ure puir Laepers	ip is requi	irea									
	D)	Common rai	l pressu	re is high	umping er thar	g pressur I the inje	re ection pressu	re						
80.	When	comparing a t							_					
	same	size:	WO 3110	ke penor	engme	with a	four stroke p	etrol eng	ine of					
	A)	Two stroke e	engine r	equire a h	eavier	flyyyba	i.							
	B)	Two stroke e	ngine r	equire a li	ighter	flywhaa	51 I							
	C)	Two stroke e	engine r	equire no	flywh	ny whee eel	l							
	D)	Both two and	d four st	roke engi	ne req	uire flyv	wheel of sam	e mass						
81.	In a vapour compression refrigeration cycle, the working fluid mind to													
		-		8-100) 11 C J C J	ic, the v	working muna	rejects i	neat at					
	A)	Expansion va	alue		B)	Evapo	rator							
	C)	Compressor			D)	Conde	nser							
82.	The h	umidification	process	is used to	increa	ase the								
	A)	Specific hun	ndity		B)	Relativ	e humidity							
	C)	Wet-bulb ter	nperatu	re	D)	Dry-bu	ilb temperati	ıre						
83.	The P	elton turbine is	s i	mpulse tu	ırbine									
	A)	Mixed flow			B)	Radial	flow							
	C)	Axial flow			D)		ntial flow							
84.	The o	verall efficiend	y of a v	vater turb	ine is	the ratio	of:							
	A)	Power at the	shaft to	the nowe	er of th		0.							
	B)	I O WCI at the	IIII Ct OI	THE HIPPIP	10 to 41		_							
	C)	I owel at the	Siluit to	, are powe	ir deve	loned b	41.							
	D)	Power develo	oped by	the runne	er to th	robed b	ine runner							

85.	In certain occasions, belt drives are preferred to chain drives because: A) Belt drives transmit more power than chain drives												
	A)												
	B)	Belt drives gi											
	C)	Belt drives en	sures po	ositive p	ower ti	ransmis	ssion						
	D) Cost of operation of belt drives is lower than that of chain drives												
86.	The f	eed rod in a lath	e is use	d to mo	ve the -								
	A)	Tailstock cen			B)	Carria	age						
	C)	Steady rest			D)		cone pulley						
87.	The r	ermissible rang	e of wat	ter cont	ent in a	reen ca	nd is n er	rcent					
011	A)	10 to 12	B)	8 to 10	_	C)	6 to 8	D)	4 to 6				
88.	In me	etal arc welding	too sm	all bead	format	tion is c	lue to:						
00.	A)	High welding			B)		welding curre	nt					
	C)	Low welding			D)	_	welding currer						
89.	A Cì	NC machine ess	entially	consists	of:								
	A)	Main frame of			B)	Micro	processor						
	C)	Punched card			D)		ol unit						
90.	Whi	ch of the follow	ing smit	h forgin	g opera	ations is	s used to reduc	e the len	gth of a				
		c piece?	C	C	0 1				C				
	A)	Setting down	1		B)	Swag	ing						
	C)	Upsetting			D)	Puncl	hing						
91.	The	unit of force in	SI syste	m of uni	its is:								
	A)	Dyne	B)	Kilog	ram	C)	Newton	D)	Watt				
92.	The	tendency of rota	ation of	the body	y along	any ax	is is:						
	A)	Impulse	B)	Mome	entum	C)	Torque	D)	Inertia				
93.	Mat	erials which hav	e the sa	me elas	tic prop	erty in	all direction:						
	A)	Isotropic	B)	Ideal		C)	Uniform	D)	Elastic				
94.	The	maximum frict	ion for	ce, at th	e time	of imp	ending motion	n is calle	edfriction	on			
	A)	Dry	B)	Static		C)	Kinetic	D)	Limiting				
95.	The	resultant of two	forces l	P and Q	acting	at an ai	ngle θ is?						
	A)	$P^2 + Q^2 + 2P$	$Q \cos\theta$		B)	P^2+	$Q^2 + PQ \cos\theta$						
	C)	$P^2 + Q^2 + 2P^2$	Q tanθ		D)	$\sqrt{(P^2)}$	$^2 + Q^2 + 2PQ$	cosθ)					
96.	The	unit of moment	of inert	ia of an	area is	:							
	A)	Kg-m ²	B)	m ⁴		C)	kg/m^2	D)	m^3				
07				1 . 0 :									
97.	A projectile is fixed at an angle Θ to the vertical, its horizontal line will be maximum when Θ is equal to												
	A)	0^0	B)	45 ⁰		C)	60^{0}	D)	90^{0}				

98.	A) B) C) D)	is the basic law for Newtons's laws Parallelogram la Newton's laws Hooke's law	s of viscosit aw					
99.	SI un	its of force and en		spectivel	y:			
	A) C)	Newton and war Newton and Jou		B) D)	Dyne Kg w	and Erg att and joule		
100.	Wher devel	n there is no relativ	ve force bet	ween to	uching s	urfaces, fr	riction	force is
	A)	•	B) Dyna	amic	C)	Static	D)	Fluid
101.	The c A) C)	hange in the mom Rotational mom Total weight		to whic B) D)	Bendi	following? ng moment under the shear	· diagra	m
102.	A) C)	doesn't affect fric Surface roughne Reaction of surf	ess	B) D)		tending to cau of contact	se moti	on
103.	The e	nergy possessed b Potential E	oy a body dı B) Kine		nge in i C)	ts position is Mechanical	D)	rgy. Absolute
104.	SI un A)	it of kinematic vis m/s ² E	cosity: B) m ² /s		C)	cm/s	D)	cm/s ²
105.	The ra A) C)	adius of gyration i End conditions Loading	s the proper	rty of: B) D)	Geom Mater	•		
106.	Which A) C)	h of the following while loop do-while loop	is an exit c	ontrolled B) D)	d loop? for loo Neste	•		
107.	Find t	he output of the fo	ollowing co	de?				
	main() { int x=constity++;							
	A) C)	6 5		B) D)	7 Comr	nilation error		

108.	Consid 1. 2. 3.	der the followir stremp is an in stremp can ret stremp suppon							
	A) C)	1, 2 and 3 1 only			B) D)	1 and 1	•		
109.	Variat	oles that are bot f storage o	h alive	and acti	ive thro	ughout	the entire C	programn	ne are
	A)	Automatic	B)	Regist	er	C)	Static	D)	External
110.	Which A) B) C) D)	of the following Functions end Functions after Every program Functions are	ible cod er execu mme mi	e reuse ition ret ust cont	urns mu ain at le	ıltiple v ast one	alues.	n C?	
111.	The for A)	unction in whic User defined Standard libra	function	ns	nction a B) D)	Recurs	ing function sive function of the above	า	re called?
112.	Argun A) B) C) D)	ments that are g Function argu Formal argun Command-Li Parameterize	iments nents ne argu	ments	y user b	efore ru	inning a prog	gram are o	called?
113.	Choo A) B) C) D)	se the correct so Call by value Call by Value Call by value All of the abo	does not copies protect	ot use post the var	ointers. iable va	ılue in n	nultiple men	nory locat n called fi	ions unctions
114.	Which A) B) C) D)	h of the following gets() read in gets() read the gets() do arrangets() has a result of the gets() has	put fror e input y bound	n the sta until it o d testing	andard i encount	nput.		ion in C?	
115.	Find t	the odd one am Assembler	ong the B)		ing? browser	: C)	Compiler	D)	Debugger
116.	Choose condi A) B) C) D)	se the correct station? expression if both expression if condition if condition in Both express	on 1: ex ssions a s false e s true e:	pression re true expression xpression	n 2 conditic ion 1 wi on 1 wil	on will t ll be ev l be eva	pe checked. aluated else	expressior	on 2. 1 2.

12

22013 A

117.	What A)	is the return float	type of po B)	ow() function char	in C? C)	double	D)	integer
118.	#inch void f { char f char f printf strepy printf }	[50]; n[] = "Bye"; ("%s", h); y(f, h); ("%s", f); main() {		ving code?				
	A) C)	eyB Bye ByeBye		B) D)	Bye Com	pilation Error		
119.	Whic	h of the follo	wing is n	ot a reserved l	keyword	in C?		
	A)	auto	B)	switch	C)	main	D)	default
120.	Find	the correct hi	erarchy o	of arithmetic o _l	perators	in C?		
	A)	*/+-	B)	+ - * /	C)	* + - /	D)	-*+/
			***	********	****	. •		

13