

9. The value of integral $\iint_R x dx dy$ in the region bounded by the lines x = 0 : y = 0 and x + y = 1 is: A) 0 B) $\frac{1}{6}$ C) $\frac{1}{3}$ D) 1

10. The particular integral of the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 6y = x$

A)
$$\frac{1}{5}e^x$$
 B) $-\frac{1}{5}x$ C) $-\frac{1}{5}e^x$ D) $\frac{1}{5}x$

11. The polar coordinates (r, θ) of the point $(2\sqrt{3}, -2)$ satisfying $r \ge 0$ and $0 \le \theta < 2\pi$ is:

A)
$$(4, \frac{\pi}{6})$$
 B) $(4, \frac{7\pi}{6})$ C) $(4, \frac{11\pi}{6})$ D) $(4, \frac{5\pi}{6})$

12. Which of the following is an eigen vector corresponding to an eigen value of the matrix $A = \begin{bmatrix} 4 & -5 \\ 1 & -2 \end{bmatrix}$ is:

A)
$$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 B) $\begin{pmatrix} 5 \\ -1 \end{pmatrix}$ C) $\begin{pmatrix} -1 \\ 5 \end{pmatrix}$ D) $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$

13. Which of the following is true?

- A) All matrices are diagonalizable
- B) A matrix is diagonalizable only if all its eigen values are distinct
- C) All real symmetric matrices are diagonalizable
- D) All invertible matrices are diagonalizable

14. The matrix associated with the quadratic form $4x^2 - 8xy + 2y^2$ is:

A) $A = \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix}$ B) $A = \begin{pmatrix} 4 & -4 \\ -4 & 2 \end{pmatrix}$ C) $A = \begin{pmatrix} 4 & 8 \\ 8 & 2 \end{pmatrix}$ D) $A = \begin{pmatrix} 4 & -8 \\ -8 & 2 \end{pmatrix}$

15. The general solution of the differential equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = 0$ is:

- A) $e^{-2x}(A\cos 3x + B\sin 3x)$
- B) $e^{-3x}(A\cos 2x + B\sin 2x)$
- C) $e^{2x}(A\cos 3x + B\sin 3x)$
- D) $e^{3x}(A\cos 2x + B\sin 2x)$

16.	If $f($	$(x,y)=4x^2-$	- 8 <i>xy</i> -	$-2y^2$, then	$x\frac{\partial f}{\partial x} +$	$y \frac{\partial f}{\partial y}$ is equal	to:	
	A)	f(x,y)	B)	-f(x,y)	C)	2f(x,y)	D)	0
17.	Suppo	ose $\omega = \sqrt{x^2}$	$+y^{2};$	$x=\cos\theta \; ; \; y$	r = sin	θ . The value of	of $\frac{d\omega}{d\theta}$ at	$\theta = \frac{\pi}{2}$ is:
	A)	1	B)	0	C)	-1	D)	2
18.	f (x, y A) B) C) D)	$y) = y^{2} + x^{2}$ Minimum a Maximum a Both maxim Neither max	$y + x^4$ it (0, 0) it (0, 0) ium and iimum b	has: I minimum at nor minimum	(0, 0) at (0, 0))		
19.	The c A)	critical point o (2, 1)	f <i>f</i> (x, y B)	$y) = x^2 + xy$ $(-1, 2)$	- y ² - C)	-4x + 3y - 1 (1, 3)	is: D)	(1, 2)
20.	The p	oower series e	xpansio	on of $\sum_{n=0}^{\infty}$	(1 + x)	ⁿ is valid in th	ne inter	val:
	A)	(0, 2)	B)	(-1,1)	C)	(-2,0)	D)	(1, 0)
21.	The s	series $\sum_{n=0}^{\infty} \frac{1}{2}$	1 n(2n+1)	converges to:				
	A)	log 2	B)	1	C)	2-log 2	D)	1-log 2
22.	Whic	h of the follow	wing in	equalities is tr	rue?			
	A)	$\cos x \ge 1 +$	$\frac{1}{x^2}$ for	all real x				
	B)	$\sin x \le x -$	$\frac{x^2}{2}$ for $\frac{1}{2}$	x > 0				
	C)	$\cos x \ge 1 -$	$\frac{1}{x^2}$ for	all real x				
	D)	$\sin x \le x +$	$\frac{x^2}{2}$ for	x > 0				
23.	Whic soluti	h of the follow on?	wing di	fferential equa	ations H	$as y = x(c_1 - $	$+ c_2 \log$	gx) as general
	A)	$x^2 \frac{d^2 y}{dx^2} - x \frac{d}{dx}$	$\frac{y}{x} + y =$	= 0 B)	$x^2 \frac{d^2}{dx}$	$\frac{y}{2} + x\frac{dy}{dx} = x$		
		$a d^2 y$			42	ar dar		

C)
$$x^2 \frac{d^2 y}{dx^2} - 4y = 0$$
 D) $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = 0$

The middle term in the Taylor series expansion of $\left(2x - \frac{1}{3x^2}\right)^6$ is: A) $-\frac{40}{9x^3}$ B) $\frac{40}{9x^3}$ C) $-\frac{10}{9x^3}$ D) $\frac{40x^3}{9}$ 24. B) $\frac{40}{9x^3}$ Sum infinity of the series $\frac{4}{3!} + \frac{7}{5!} + \frac{10}{7!} + \cdots \infty$ is: 25. B) $\frac{e^2 - 4e + 2}{2e}$ C) $\frac{e^2 - 4}{2e}$ D) $\frac{e^2 - 2e + 2}{2e}$ A) 0 The constant term in the Fourier series expansion of 26. $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ is: A) B) $\frac{\pi}{2}$ $-\pi$ C) -2π D) 0 A particle moves along the curve whose parametric equations are given by 27. $x = t^2 - 1$, y = 2t and $z = t^2 - 1$, where t denotes the time. The acceleration at t = 1is: $2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ A) B) $\hat{\iota} - 2\hat{j} + 2\hat{k}$ D) $2\hat{\iota} + 2\hat{k}$ C) $2\hat{i} + 2\hat{j}$ The particular solution of the differential equation $\frac{d^2y}{dx^2} - y = e^x \sin x$ is: 28. A) $-\frac{e^{x}(2\cos x - \sin x)}{5}$ B) $\frac{e^{x}(2 \cos x + \sin x)}{5}$ C) $\frac{e^{x}(2\cos x - \sin x)}{5}$ D) $-\frac{e^{x}(2\cos x + \sin x)}{5}$ The unit tangent vector at the point $\left(0,2,\frac{\pi}{2}\right)$ on the curve $\bar{r}=2\cos\theta\hat{i}+2\sin\theta\hat{j}+2\theta\hat{k}$ 29. is: $\frac{-\hat{\iota}+\hat{k}}{\sqrt{2}} \qquad B) \qquad \frac{\hat{\iota}+\hat{k}}{\sqrt{2}} \qquad C) \qquad \frac{\hat{\iota}-\hat{k}}{\sqrt{2}} \qquad D) \qquad \frac{\hat{\iota}+\hat{j}+\hat{k}}{\sqrt{3}}$ A) The value of 'a' such that $\phi(x, y, z) = ax^2y^2 + 24y^2z - zx^2$ has maximum 30. directional derivative 12 at the point (2, 1, 1) in the direction parallel to x -axis is: B) 6 C) 7 D) 1 The series $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$ is: 31. A) Divergent B) Converges to $\frac{1}{2}$ C) Converges to 0 D) Converges to $\frac{1}{4}$

32. If $\sum_{n=0}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n^p}$ is a series of positive terms, then the series: Converges if $p > \frac{1}{2}$ A) Converges for all pB) C) Converges if $p \le \frac{1}{2}$ D) Diverges for all pLaplace transform of $sin^2 3t$ is: 33. A) $\frac{18}{s(s^2-36)}$ B) $\frac{18}{s(s^2+36)}$ C) $\frac{12}{s(s^2-36)}$ D) $\frac{24}{s(s^2+36)}$ If $\vec{A} = 2t^2\hat{i} + (t^2 + 1)\hat{j} + t\hat{k}$ and $\vec{B} = t\hat{i} + t^2\hat{j} + \hat{k}$, the modulus of $\frac{d}{dt}(A \times B)$ 34. at t = 0 is: B) $\sqrt{2}$ C) D) $\frac{1}{\sqrt{2}}$ 0 A) 1 If $\vec{r} = t^2 \hat{i} + 4t \hat{j} - \hat{k}$ then $\int_0^1 \left(\vec{r} \cdot \frac{d\hat{r}}{dt}\right) dt$ is: A) 17 B) $\frac{17}{2}$ 35. C) $\frac{15}{2}$ D) 8 If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then grad $|\vec{r}|$, where $r = |\vec{r}|$ is: 36. A) $\frac{\vec{r}}{r}$ B) \vec{r} C) $\frac{\vec{r}}{r^2}$ D) $-\frac{\vec{r}}{2r^2}$ The value of *n* for which $r^n \vec{r}$, where $r = |\vec{r}|$ irrotational is: 37. A) -3B) 3 C) 1 D) $^{-1}$ 38. Which of the following is **not** true? $curl(\vec{A} + \vec{B}) = curl \vec{A} + curl \vec{B}$ A) $div(\vec{A} + \vec{B}) = div \vec{A} \times div \vec{B}$ B) $curl(\phi \vec{A}) = (grad\phi) \times \vec{A} + \phi curl \vec{A}$ C) D) $curl(grad\phi) = 0$ The inverse Laplace transform of $\frac{4(s-2)}{s^2-4s+8}$ is: 39. 4e^{2t}sin2t B) $4e^{-2t}cos2t$ A)

C) $4e^{2t}cos2t$ D) $\frac{e^{2t}cos2t}{4}$

40. The Fourier sine transform $F(\omega)$ of $f(x) = e^{-x}$ is:

A) $\frac{1}{1+\omega^2}$ B) $\frac{2\omega}{1+\omega^2}$ C) $\frac{1}{1-\omega^2}$ D) $\frac{\omega}{1+\omega^2}$

41. Two coplanar concurrent forces of magnitude 5 N and 6 N makes an angle 60° with each other, then the magnitude of the resultant is:
A) 9.5 N B) 6.4 N C) 8.7 N D) 12.3 N

42. A body is said to move with Simple Harmonic Motion if its acceleration, is:

- A) Always directed away from the centre, the point of reference
- B) Proportional to the square of the distance from the point of reference
- C) Proportional to the distance from the point of reference and directed towards it
- D) Inversely proportion to the distance from the point of reference
- 43. A car travels with a speed of 12 m/s when accelerated at 0.1 m/s^2 from its rest position. What is the distance travelled?
 - A) 1440 m B) 144 m C) 720 m D) 72 m
- 44. The area under a velocity time graph gives:
 - A) Acceleration B) Displacement
 - C) Velocity D) Mass

45. When a body is moving along a circular path its velocity is directed towards:

- A) Center B) Normal
- C) Tangent D) Parallel to circle
- 46. A free body diagram is the sketch of:
 - A) A body in motion that shows bending forces of the body
 - B) An undisturbed body that shows external forces of the body
 - C) A moving body that shows internal forces of the body and reaction forces
 - D) An isolated body that shows external forces of the body and reaction forces
- 47. A rigid body rotates with an angular momentum L. If the kinetic energy is halved, what will be the angular momentum?
 - A) L B) L/2 C) L/ $\sqrt{2}$ D) 2L
- 48. If simple harmonic motion of a pendulum dies after some time due to energy dissipation by viscous forces in air the oscillation is said to be:
 - A) Undamped B) Damped C) Free D) Forced

A sp lift is	ring mass system is oscillat s slowly accelerated upward	ing wit ls. the f	h a frequency 'f' in a lift at rest. If the requency of the spring mass system will:
A)	Remain the same	B)	Increase
C)	Decrease	D)	Become zero
Wha	t is the frequency with which	ch a for	ced harmonic oscillator vibrates?
A)	Their natural frequency		
B)	Frequency of applied per	iodic fo	orce
C)	Difference between natur	al frequ	uency and frequency of applied periodic
	force		
D)	Sum of natural frequency	and fro	equency of applied periodic force
Whe	n two waves of same ampli	tude wi	th a phase difference of 180°
supe	rimpose the amplitude of th	e result	ant is:
A)	Same as single wave	B)	Double of single wave
C)	Thrice of single wave	D)	Zero
	A sp lift is A) C) Wha A) B) C) D) Whe supe A) C)	 A spring mass system is oscillat lift is slowly accelerated upward A) Remain the same C) Decrease What is the frequency with which A) Their natural frequency B) Frequency of applied per C) Difference between nature force D) Sum of natural frequency When two waves of same amplition superimpose the amplitude of the A) Same as single wave C) Thrice of single wave 	 A spring mass system is oscillating with lift is slowly accelerated upwards, the feasibility of the same of the same

- 52. Calculate the least thickness of a soap film (refractive index 1.5) that will result in destructive interference in reflected light if light of wavelength 600 nm is incident normally on it.
 - A) 200 nm B) 400 nm C) 600 nm D) 800 nm
- 53. When a compact disc (used in audio and video systems) is seen in sunlight rainbow like colours can be seen. This can be explained on the basis of:
 - A) InterferenceB) DiffractionC) PolarizationD) None of these
- 54. How many lenses are used in Fraunhofer diffraction?
 - A) Two convex lenses B) Two concave lenses
 - C) One concave lens D) One convex lens
- 55. The incident wavefronts in Fresnel and Fraunhofer diffraction are respectively:
 - A) Planar and planar B) Planar and spherical
 - C) Spherical and planar D) Spherical and spherical
- 56. The concept of matter wave was proposed by:
 - A) Werner Heisenberg B) Erwin Schrodinger
 - C) Albert Einstein D) Louis de Broglie

57. Among the following particles which are all moving with the same velocity, the one having the smallest wavelength is:

- A) Electron B) Proton C) Neutron D) Cricket ball
- 58. Which of the following is **not** a characteristic of a wavefunction?
 - A) Physically significant B) Continuous
 - C) Single valued D) Finite

59.	If the $(1/\pi)$: atom?	error in the m x 10 ⁻⁷ s, what	easurei will be	nent of the unc	the life certaint	etime o y in fr	of an atom in equency of	n the exc light emi	ited state is tted by the
	A)	2.5 MHz	B)	2.5 Hz	2	C)	2.5 kHz	D)	0.25 MHz
60.	Whiel A) C)	1 one of the fo Nanoparticle Nanotube	ollowin _. es	g is an o	exampl B) D)	le of a Nano Nano	zero dimens rods sheet	sional na	nostructure?
61.	The c A)	olour of nano Yellow	gold pa B)	articles Gold	is:	C)	Red	D)	Variable
62.	Whick sound	h of the follow is correct?	ving rel	lations l	betwee	n loud	ness (L) and	l intensity	y (I) of
	A)	I α log L			B)	Ιαlo	g L²		
	C)	Lαlog I			D)	Lαl	$\log L^2$		
63.	Time	required for s	sound to	o decay	by 60	dB:			
	A)	Echo time			B)	Reve	rberation tir	ne	
	C)	Delay time			D)	Trans	sient time		
64.	Whic	h of the follo	wing is	not an	acousti	cal de	fect?		
	A)	Reverberati	on		B)	Abso	orption		
	C)	Formation c	of echoe	es	D)	Soun	d foci		
65.	The c	change in leng	th of a	ferroma	agnetic	mater	ial when pla	aced in a	magnetic
	field	is known as: Piezoelectri	a affact						
	A) B)	Inverse piez	coelectr	ic effec	t				
	Ć)	Electromag	netic in	duction	-				
	D)	Magnetostri	iction e	ffect					
66.	The eveloc	echo of a puls ity of ultrasor	e of ultr nic wav	rasonic es is 16	waves 500 m/s	from a the di	a sonar retur	rns after	1 s. If the
	A)	1600 m	B)	1200	m	C)	800 m	D)	400 m
67.	Lase	r medium in F	Ruby las	ser is:					
	A)	Aluminium	oxide						
	B) C)	Chromium	oxide d	onad	ith -1	• - •			
	D)	Aluminium	oxide a	loped w	un alui vith chi	miniur	n ions		
	,			1		onnul	II IOHS		

÷.

- 68. Which information about the light scattered from an object is recorded in a hologram?
 - A) Amplitude only
 - B) Phase only
 - C) Neither amplitude nor phase
 - D) Both amplitude and phase

69. An optic fibre in which the refractive index of the core is uniform throughout and undergoes an abrupt change at the cladding boundary is known as

- A) Uniform index fibre B) Step index fibre
- C) Graded index fibre D) Scale index fibre
- 70. The numerical aperture of an optic fibre with acceptance angle of 30^{0} in air will be: A) 0.5 B) 0.7 C) 1 D) 1.5
- 71. Which among the following is used in redox titrations?
 - A) $KMnO_4$ B) $K_2Cr_2O_7$
 - C) $(NH_4)_4Ce(SO_4)_4 \cdot 2H_2O$ D) All of these
- 72. The platinum conductor in a SHE is coated with platinum black. This is done to:
 - A) Increase its specific surface area
 - B) Prevent corrosion
 - C) Prevent dissolution of the metal
 - D) Keep the solution saturated
- 73. 'Black nickel' is a dark coating which is primarily composed of :
 - A) Nickel sulfamate
 - B) Metallic nickel and Cu
 - C) Nickel sulfide and metallic Zn and Ni
 - D) Metallic nickel coated with platinum

74. The cathode material in a Lithium ion battery is:

- A) LiCoO₂ B) Graphite
- C) Lithium titanate D) Silicon
- 75. The range of UV-Vis spectroscopy is
 - A) 200-780 nm B) $4000-400 \text{ cm}^{-1}$
 - C) $10^6 10^{11}$ Hz D) 1 10 nm

76.	The 1	microwave active molecules from a CO ₂ , N ₂ , HCl, NH ₃ , CO is:	mong	
	A)	HCl and NH ₂ only	B)	CO and CO_2 only
	C)	HCl, NH ₃ and CO only	D)	N_2 only
77.	The (CH proton in isopropyl chloride wil	ll split	into a in ¹ H-NMR spectroscopy.
	A)	doublet B) triplet	C)	quartet D) septet
78.	A DT	IG is a plot of:		
	A)	mass v. Temperature	B)	dm/dT v. Temperature
	C)	$\Delta H/dt$ v. Temperature	D)	ΔT v. Temperature
79.	The	intense violet colour of KMnO4 is d	lue to:	
	A)	LMCT transition	B)	d – d transition
	C)	MLCT transition	D)	fluorescence
80.	Whie nanc	ch is true regarding Hydrothermal s omaterials?	ynthes	is employed in the synthesis of
	A)	It uses water at room temperature	e and p	ressure
	B)	It uses water above its boiling po	int at h	high pressure
	C)	It uses water at its boiling point a	it low p	pressure
	D)	It uses ice cold water at extremel	y low j	pressures
81.	Iden	tify the wrong statement from amo	ng the	following:
	A)	Gas chromatography is limited to	o volati	le and thermally stable samples
	B)	HPLC has much lower choice of	mobile	e phases than in GC
	C)	A chemically inert carrier gas lik	$e N_2 o$	f Ar is used in GC
	D)	HPLC can handle any soluble co	mpoun	d regardless of volatility
82.	The	decreasing order of priority of grou	ps acc	ording to CIP rules is correctly
	repro	esented as:		to concerty
	A) B)	-OH > -CHO > -COOH > -CHO	$_{2}OH$	
	C	-OH > -COOH	-OH	
	D)	-COOH > -CHO >	l_2OH	
	-)	$COOM > CHO > - CH_2OH >$	→ –OH	

- 83. A C₆₀ fullerene has a cage-like fused-ring structure. It is made of ---- hexagons and ----- pentagons respectively.
 - A) 12 and 20 B) 20 and 12 C) 20 and 20 D) 12 and 12
- 84. Which among the following statements is true regrading HDPE?
 - A) The structure is branched
 - B) Its softening temperature is high compared to LDPE
 - C) It has a low crystallinity compared to LDPE
 - D) Its tensile strength is less compared to LDPE
- 85. How many stereoisomers are possible for glucose?
 A) 2 B) 4 C) 8 D) 16
- 86. The structure of threonine is given below. This stereoisomer is ---, ---- threonine.

87. Which among the following is **not** a conducting polymer?

- A) Polyaniline B) Polypyrrole
- C) Polylacticacid D) Polyacetylene

88. °Fr (degree French) is a unit of hardness of water. It is the number of parts of CaCO₃ equivalent hardness in ----- parts of water.

A) 7×10^3 B) 1×10^6 C) 1×10^5 D) 7	$\times 1$	1	1	1	ĺ	1	1	1	1]]	ļ	ļ			ļ	ļ	ļ	ļ	ļ]	ļ	ļ]]]]]	ļ																					<	<	<	<	<	×	>	>				.8	ł	1	1	7))))	Ľ]											Э)	0	0	1	1		<	×	2		1)	2)	2	C	((,	0)°)	0	(l	1			:	<	>	>	l	1]	
---	------------	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	---	---	---	---	---	--	--	--	----	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	---	---	---	---	---	---	--	---	---	---	--	---	--	--	--	--	--	---	----	---	---	---	---	--	--	--	--	--	--	--	--	--	--	---	---	----	---	---	---	---	---	--	--	---	---	---	---	---	---	---	--

89. Chlorination of water to such an extent that living organisms as well as organic impurities in water are destroyed is termed as----.

- A) Total chlorination B) Break point chlorination
- C) Free Residual chlorination D) Both B and C

90. The following techniques can be used for the desalination of brackish water. The best technique which is effective and economical among these is ----.

- A) Distillation B) Freezing
- C) Electrodialysis D) Reverse osmosis

91.	Outp A) C)	ut of the compiler is Object code Both (A) and (B)	: B) D)	High None	level code of these		
92.	Role A) B) C) D)	of the lexical analyz Divide the program Remove comment Remove whitespac All of these	zer is: n into token lines ces	S			
93.	Aver A) C)	age time complexity O(nlogn) O(1)	of bubble so B) D)	ort is: O(n) None	of these		
94.	What main { int a float c=a/t print }	t will be the output o () =20, c; : b=3; ; f ("%d", c);	of the follow	ing code?			
	A)	6 B)	6.6	C)	6.0	D)	0.66
95.	What int m { int a b=b* print: retur }	t will be the output o aain() =6,b=2; (a=10); f ("%d", b); m 0;	of the follow	ing code?			
	A) C)	20 Compilation Error	B) D)	2 None	of these		
96.	Signe A)	ed character has a rat 0 to 128 B)	nge from: -128 to +1	127 C)	0 to 255	D)	-255 to +255
97.	ʻstrno A) B) C) D)	eat' string library fur Appends first n ch Appends one string Copies first n char Compares two stri	nction is used aracters of a g at the end acters of ond ngs without	d to: string at of anothe string in regard to	the end of a r to another case	nother	

s

98. What will be the output of the following code? main() Ł char a[]= "India"; a++; } A) error, constant pointer cannot change error, invalid operator B) C) error, l value required None of the above D) What will be the output of the following code? 99. int main() { ł int n=10; n=20; n=n+10; ł printf("%d", n); return 0; } B) 20 A) 10 Compilation error 30 C) D) What will be the output of the following code? 100. int main() ł char string1[] = "HELLO"; char string2[] = "HELLO"; int j; j = strcmp(string1, string2);printf("%d\n", j) ; return 0; } A) -1 B) 1 None of these C) 0 D)

101.	What void n { printf(return }	will be the ou nain() (3 + "C PROC 0;	tput of GRAM	the follo MING '	owing ') ;	g code?			
	A) C)	ROGRAMM OGRAMMI	IING NG		B) D)	C PR GRA	OGRAMMI MMING	NG	
102.	The ft A)	nction used to fclose()	o open B)	the file: fread()		C)	fwrite()	D)	None of these
103.	The ft A)	nction used t fgetc()	o read t B)	the file's fputc()	s cont	tents fro C)	om memory: printf()	D)	scanf()
104.	The pa A) C)	arameter pass Call by value Both (A) and	ing mee e l (B)	chanism	used B) D)	in C la Call t None	nguage: by reference of these		
105.	What void r { int i; for(i = printfo }	will be the ou nain() = 0; i<3; i++); ("%d", i);	itput of	the follo	owing	g code?			
	A) C)	0,1,2 Compilation	error		B) D)	3 4			

÷

.

Questions **106-110**. Read the passage and choose the most appropriate answer from the options provided.

Government By AI IsWhat We Need

I don't understand why people are worried about AI taking over government. The dinosaurs lasted 165 million years. The first 'upright apes' evolved only 5 million years ago and *Homo sapiens* didn't arrive on the scene until about 300,000 years ago.

We have only a few thousand years of recorded history. It isn't a great record. Our world is run by men with an insatiable lust for power and/or an insatiable greed for money. Despite the warnings of science on climate change, they continue to trash our only planet. The human race will be lucky if it lasts another 1000 years.

But a government run by AI would be completely logical. Isn't that the best hope for preserving humanity?

106.	'AI' stands for:				
	A) Artificial Intelligence	B)	Augmented Intelli	gence	
	C) Amplified Intelligence	D)	Artificial Intellect	8	
107.	A phrase in the passage has her				
1011	A) Technical	en italici:	sed because it is:		
	C) Foreign	B)	Scientific		
	c) Poreign	D)	Anthropological		
108.	The sentence 'It isn't a great re	cord" is	an instance of:		
	A) hyperbole	B)	hypersensitivity		
	C) metaphor	D)	understatement		
	-	_)			
109.	Our history is approximately:				
	A) I65 million years	B)	170 million years	±	
	C) 300000 years	D)	1000 years \pm		
			-		
110.	The word 'trash' is used in the	passage	as a/an:		
	A) noun	B)	verb		
	C) adjective	D)	adverb		
111	Pick the closest avecance of the		····· · · · · · · · · · · · · · · · ·		
111.	A) destitute		ve from the following	ıg:	
	(C) tawdry	Б) (П	aconomical		
	c) tawary	D)	cononnear		
112.	Pick the closest antonym of 'ur	nimporta	nt' from the followir	ig:	
	A) authoritarian	B)	supercilious	0	
	C) seminal	D)	inconsequential		
113.	Pick the part of the sentence th	at contai	ns an error or pick 'I	D' to ind	licate that
	there is no error in it:				
			19		
	Who's painting your living ro	bom b	$\frac{100}{2}$		
	A) B)	(D (No er	ror)	
114.	Which part of the following set	ntence ha	as a comma missing?)	
	Though somewhat tired	she s	aid she would stay	a littl	e longer.
	A) B)		C)		D)
2 X -					
115.	The expansion of 'etc':				
	A) ex cetra B) et c	etera	C) ex terac	D)	et cerac

•

.

116. Rearrange the sentences of the following paragraph in the correct order:

1. That evening I could not fall asleep.

ş

5

- 2. Now that I knew her last illusion had vanished it was extremely difficult for me to go and see her.
- 3. But she also knew that up until the last month and unless some unforeseen accident should befall her, she would keep her presence of mind and even a certain physical activity.
- 4. I learned one day that my old friend Pauline, who had long ago been diagnosed with cancer, would not last the year, and the doctor had confessed the truth to her.
- 5. I decided, however, one evening to go there the next day.
- A) 4, 5, 1, 2, 3 B) 4, 3, 2, 5, 1 C) 1, 4, 5, 2, 3 D) 4, 3, 1, 5, 2

117. Pick the correctly spelt word: A) sequens empatetic B) chandelier D) zerosem C) 118. Fill in the blanks to complete the sentence: 'Mishra has ---- will ---- win.' A) a. for B) a. to C) the, to D) the, can 119. Pick the part of the sentence that contains an error, or pick 'D' to indicate there is no error in it: He petitioned the President that his father be pardoned. A) B) C) D) (No error)

120. Fill in the blanks to complete the sentence: Mohan and Janaki ----- now ready to challenge the visiting team. A) is B) are C) feel D) feeling

22012

A 120 MINUTES

- The system of linear equations x + y + z = 0; 2x + y + z = 0; x + y + kz = 01. has non-trivial solution if: C) k = 2 D) k = -2A) k = 1k = -1B) The rank of the matrix $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 4 & 7 \\ 1 & 1 & 3 \end{bmatrix}$ is: 2. None of these A) 1 3 C) 2 D) B)
- 3. Which of the following is true for a system AX = b of m linear equations in n variables?
 - A) The system is consistent only if b = 0
 - B) If m > n and b = 0, the system has infinite number of solutions
 - C) If rank(A) = m and b = 0, the system has only trivial solution
 - D) If m = n and the system has unique solution, then A is invertible

4. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$ is:

- A) $\lambda^2 + 6\lambda + 7$ B) $\lambda^2 6\lambda + 7$
- C) $\lambda^2 + 6\lambda 7$ D) $\lambda^2 6\lambda 7$
- 5. The eigen vector corresponding to the eigen value $\lambda = 1$ for the matrix $A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix}$ is:

A)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 B) $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ C) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ D) $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

- 6. Which of the following is **not** true?
 - A) A matrix A is invertible, then all its eigen values are non zero
 - B) If λ is an eigen value of an invertible matrix A, then λ^{-1} is an eigen value of A^{-1}
 - C) If a scalar λ is an eigen value of a matrix A, then the matrix $A \lambda I$ is singular
 - D) A matrix A is diagonalizable only if all its eigen values are distinct

The quadratic form q(X) that corresponds to the symmetric matrix 7. $A = \begin{pmatrix} 5 & -3 \\ -3 & 7 \end{pmatrix}$ is: A) $5x^2 - 3xy + 7y^2$ B) $5x^2 - 6xy - 7y^2$ D) $5x^2 + 6xy + 7y^2$ C) $5x^2 - 6xy + 7y^2$ The eigen values of the matrix $A = \begin{pmatrix} 2 & 3 \\ x & y \end{pmatrix}$ are 4 and 8 then, 8. B) x = 5; y = 8x = 4; y = 10A) D) x = -4; y = 10C) x = -3; y = 9The limit of the function $f(x, y) = \frac{xy}{x^2 + y^2}$ as $(x, y) \to (0, 0)$ along the line 9. y = x is: B) $\frac{1}{2}$ C) $\frac{-1}{2}$ A) 0 1 D) Consider the function $f(x, y) = \frac{x^3 y^2}{1 - xy}$. Then which of the following is true? 10. A) f(x, y) is continuous every where B) f(x, y) is continuous only at (0, 0)f(x, y) is nowhere continuous C) D) None of these If $f(x, y) = x^2 y^3 + x^4 y$, then $\frac{\partial^2 f}{\partial x^2}$ is: 11. A) $2y^3 + 12x^2y$ B) $6x^2v$ D) $6xy^2 + 4x^3$ C) $2xy^3 + 4x^2y$ Suppose $z = x^2 y$; $x = t^2$; $y = t^3$. The value of $\frac{dz}{dt}$ at t = 1 is : 12. A) B) 7 6 C) -6 D) 1 The relative maxima of $f(x, y) = 4xy - x^4 - y^4$ occurs at: 13. (-1,1) C) (1,1)A) (0, 0)B) D) No points The value of integral $\int_0^1 \int_{-3}^2 y^2 x dx dy$ is: 14. B) $\frac{-1}{2}$ C) $\frac{-5}{6}$ A) $\frac{5}{6}$ $\frac{1}{2}$ D)

2

22012 A

15.	The	value of integ	gral ∫ ₀ ²	$\int_{-\frac{y}{2}}^{1} e^{x^2} dx dy$	is:			
	A)	е	B)	e+1	C)	$e^{2} + 1$	D)	e-1
16.	The	area of the re	gion en	closed by the	curve <i>i</i>	$r = \sin 3\theta$ is:		
	A)	$\frac{\pi}{4}$	B)	$\frac{\pi}{6}$	C)	$\frac{\pi}{2}$	D)	$\frac{\pi}{3}$
17.	The	series $\sum_{n=1}^{\infty}$	$\frac{n+2}{n^p}$ cor	overges only f	or:			
	A)	$p \ge 2$	B)	<i>p</i> < 2	C)	p > 2	D)	$p \leq 2$
18.	If	$\int_{n=1}^{\infty} \frac{n!}{n^n} x^n \text{ is a}$	series	of positive te	rms, the	en the series:		
	A)	converges f	for all x	с В)	conv	erges if $0 \le 2$	x < e	
	C)	diverges if	$0 \leq x$	< <i>e</i> D)	dive	rges if $0 \le x$	< 3	
19.	The	series $\frac{1}{1.2} + \frac{1}{2.2}$	$\frac{1}{3} + \frac{1}{3.4}$	+ converg	es to:			
	A)	ln 2	B)	ln e	C)	ln 3	D)	2ln 2
20.	The	series $1 + \frac{1+3}{2!}$	$\frac{3}{4} + \frac{1+}{4}$	$\frac{3+3^2}{3!} + \frac{1+3+3^2}{4!}$	$\frac{+3^{3}}{}$ + ··	\cdot to ∞ conver	ges to:	
	A)	$e^3 - e$	B)	e ² – e	C)	$\frac{e^3-e}{2}$	D)	$\frac{e^2-e}{2}$
21.	The j	power series e	xpansi	on of $\frac{1}{(1+x)(2+x)}$	$\frac{1}{(3-2x)}$	$\frac{1}{2}$ valid in the	domair	1:
	A)	x < 1	B)	x > 1	C)	<i>x</i> > 2	D)	<i>x</i> < 2
22.	The o	coefficient of	(x-1)) ¹⁵ in the Tay	lor serie	es expansion	of $\frac{1}{x}$ abo	out $x = 1$ is:
	A)	$-\frac{1}{2^{15}}$	B)	$\frac{1}{2^{15}}$	C)	$\frac{1}{2^{16}}$	D)	$-\frac{1}{2^{16}}$
23.	The c	constant term i	in the f	ourier series e	expansi	on of $x - x^2$	in $-\pi <$	$< x < \pi$ is:
	A)	$\frac{2}{3}\pi^2$	B)	$-\frac{2}{3}\pi^2$	C)	$\frac{1}{3}\pi^2$	D)	$-\frac{1}{3}\pi^2$

22012 A

•

- If $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ 24. has a Fourier series expansion, then f(0) is: A) $-\frac{\pi}{2}$ B) $\frac{\pi}{2}$ 0 C) - π D) Suppose a particle moves along the curve $\vec{r} = (t^2 - t)\hat{i} + (t^2 + t)\hat{j} + t\hat{k}$ where 25. t denotes the time. The magnitude of the acceleration at t = 1 is: $2\sqrt{2}$ A) 2 $\sqrt{11}$ D) B) 3 C) 26. The unit tangent vector at (1, 2, 3) on the curve $\vec{r} = t^2 \hat{\imath} + (t^2 + 1)\hat{\jmath} + (t^3 + 2)\hat{k}$ is parallel to the vector: A) $\hat{i} + \hat{j} + 3\hat{k}$ B) $\hat{\iota} + \hat{\jmath} + \hat{k}$ D) $2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ C) $2\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ 27. The directional derivative of $f(x, y, z) = \frac{x}{y+z}$ at the point (1, 1, 1) in the direction of negative y-axis is: A) $-\frac{1}{2}$ B) $\frac{1}{2}$ C) $\frac{1}{4}$ D) $-\frac{1}{4}$ If \vec{b} is a constant vector and $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then curl $(\vec{r} \times \vec{b})$ is: 28. B) $-2\vec{b}$ C) A) $2\vec{b}$ \vec{h} D) 0 If $\vec{a} = 5\hat{\imath} - y\hat{\jmath} + \hat{k}$ and $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then, div $(\vec{a} \times \vec{r})$ is: 29. A) 0 B) ā C) 5đ D) 2ā If F is a vector field and ϕ a scalar function then which of the following is 30. true? A) $\operatorname{curl}(\phi F) = \phi \operatorname{curl} F + F \ge \nabla \phi$ B) $\operatorname{curl}(\phi F) = \phi \operatorname{curl} F + \nabla \phi \operatorname{x} F$ C) div (curl F) = F
 - D) div $(\phi F) = \phi$ div F
- 31. Suppose $f(x, y, z) = xe^{y} + ze^{x}$. The maximum value of the directional derivative at (0, 0, 1) is:
 - A) $\sqrt{3}$ B) 1 C) 0 D) $\sqrt{5}$

22012 A

32. A particle is moving along the curve $x = e^{-2t}$, $y = 3\cos 2t$, $z = 3\sin 2t$ where t is the time. The magnitude of the initial velocity is:

A) $2\sqrt{3}$ B) $2\sqrt{5}$ C) $2\sqrt{10}$ D) 0

33. Which of the following is a solution of the differential equation

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0?$$
A) e^{2x} B) e^{-2x} C) e^x D) All the above

34. The particular integral of the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{5x}$

A)
$$\frac{e^{5x}}{4}$$
 B) $\frac{e^{2x}}{12}$ C) $\frac{e^{5x}}{8}$ D) $\frac{e^{5x}}{12}$

35. The general solution of the differential equation $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = 0$ is:

- A) $c_1 e^{2x} + c_2 e^{3x}$ B) $c_1 e^{2x} + c_2 x^3$
- C) $c_1 x^2 + c_2 x^3$ D) $(c_1 + c_2) \log x$

36. Which of the following differential equation is linear?

- A) $y \frac{d^2y}{dx^2} + \frac{dy}{dx} = 2x$
- B) $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = e^x$
- C) $2 \frac{d^2 y}{dx^2} 4 \left(\frac{dy}{dx}\right)^2 + 6y = 0$
- D) None of these

37. The solution of the initial value problem $\frac{d^2y}{dx^2} + 4y = 0$, given that y(0) = 1and y'(0) = 0 is:

- A) sin 2x B) cos 2x
- C) sin 2x cos 2x D) sin 2x + cos 2x

38. Laplace transform of $t^3 e^{3t}$ is:

A)
$$\frac{3}{(s-3)^3}$$
 B) $\frac{6}{(s-3)^3}$ C) $\frac{6}{(s-3)^4}$ D) $\frac{3}{(s-3)^4}$

39. The inverse Laplace transform of $\frac{1}{(s-2)^2+4}$ is: A) $e^{2t} \sin 2t$ B) $\frac{e^{2t} \sin 2t}{2}$ C) $e^{2t} \cos 2t$ D) $\frac{e^{2t} \cos 2t}{4}$ 40. The Fourier transform of $e^{-\frac{x^2}{2}}$ is:

A) $e^{-\frac{\omega^2}{2}}$ B) $\frac{1}{2}e^{-\frac{\omega^2}{2}}$ C) $\frac{\pi}{2}$ D) $\sqrt{\pi}$

41. The angles between two forces to make their resultant a minimum and maximum respectively are:

A) 0° and 90° B) 90° and 180° C) 180° and 90° D) 180° and 0°

42. A man pulls a box of mass 10 kg with a force of 69 N and its acceleration in the direction of force is 2 m/s². What is the value of the coefficient of friction?
A) 0.3 B) 0.4 C) 0.5 D) 0.6

43. The condition of equilibrium for coplanar system of forces is:

- A) Algebraic sum of horizontal component of forces should be zero
- B) Algebraic sum of vertical component of forces should be zero
- C) Algebraic sum of moments of all forces about any point should be zero
- D) All of the above

44. Change in momentum of an object is equal to:

- A) Internal energy B) Impulse
- C) Entropy D) Enthalpy

45. D'Alembert's principle is used for:

- A) Reducing the problem of kinetics to equivalent static problem
- B) Determining stability of floating bodies
- C) Designing safe structures
- D) None of the above

46. What is the rotational analogue of force?

- A) Angular momentumB) Angular accelerationC) TorqueD) Momenta Structure
 - D) Moment of inertia

47.	Con osci disp A)	sider a mass – llates with fre lacement and $f_1 = f_2$	-spring sy quency f let f ₂ be t B)	vstem. V 1. System the frequent $f_1 > 1$	When th m is bro uency o f ₂	is syster ought to f oscilla C)	m is given an rest and then tion. Then find $f_1 < f_2$	initial dis it is give requencie D)	splacement, it n a different s None of these
48.	Whi A) B) C) D)	ch of the follo Vertical os Motion of Motion of Oscillatior	owing mo scillations a simple planet ar of liquio	otions is s of a sp pendult ound th d in a U	not sim pring um e sun tube	nple harn	monic?		
49.	Whie A) C)	ch type of dar Under dan Light dam	nping sto ping ping	ops the c	oscillatio B) D)	on in the Over Critie	e shortest tim damping cal damping	e?	
50.	In a frequ Wha A)	forced harmo uency and inc it is the Q-fact 60	nic oscill reases to tor of the B)	ator, the a maxir system 600	e amplit num of ?	ude is 0 6 mm a C)	.01 mm at ve t a driving fro 120	ry low dr equency c D)	iving of 200 Hz. 1200
51.	A wathe v	ave has a wav wave?	elength o	of 10 m	and a ti	me perio	od of 0.02 s.	What is th	ne speed of
	A)	50 m/s	B)	0.2 n	n/s	C)	20 m/s	D)	500 m/s
52.	Whie A) C)	ch of the follo Interferenc Polarizatio	wing phe e n	enomeno	on is she B) D)	own by Diffr Refle	transverse wa action ection	aves only	?
53.	Inter A) C)	ference in a th Division of Addition o	nin film i f wavefro f amplitu	s due to ont de	: B) D)	Divis Addi	ion of amplit tion of wave	tude front	
54.	What appea on it?	t is the minim ar dark in refle	um thick ected ligl	ness of ht when	a thin fi light of	ilm of re f wavele	efractive inde ength 500 nm	ex 1.25 wl	hich will nt normally
	A)	400 nm	B)	625 r	ım	C)	200 nm	D)	1250 nm
55.	To ob A) B) C) D)	otain a good d Much great Much small Comparable None of the	iffraction er than the ler than t e to the v e above	n pattern ne wave he wave vaveleng	n the siz length elength gth of li	e of the of light of light ight use	obstacle mu used used d	st be:	

56.	ln Fre	snel diffraction	the inc	ident wa	wefror	nt is:			
	A)	Hyperbolic	B)	Linear		C)	Plane	D)	Spherical
57.	The co	oncept of wave	nature	of mater	ial par	ticles w	as proposed	by:	
	A)	Werner Heise	enberg		B)	Erwi	n Schrodinge	r	
	C)	Albert Einste	in		D)	Louis	de Broglie		
58.	An ele wavel	ectron, a protor ength. The one	ı, a hyd having	lrogen at most en	tom and lergy is	d a urar s	nium nucleus	all have t	he same
	A)	electron			B)	proto	n		
	C)	hydrogen ato	m		D)	uran	ium nucleus		
59.	Find t of 1 x	he ratio of way 10^7 m/s and 2	velength x 10 ⁷ m	is of two /s	partic	les of m	ass m and 2	m moving	with a speed
	A)	3:1	B)	1:4		C)	2:3	D)	4:1
60.	As pe positie	r Uncertainty p on is:	orinciple	e, the rela	ation b	etween	relative mor	nentum an	d relative
	A)	Independent			B)	Equa	1		
	C)	Directly prop	portiona	1	D)	Inver	sely proporti	onal	
61.	Whiel	h one of the fo	llowing	is an exa	ample	ofa one	dimensiona	Inanostru	cture?
	A)	Nanoparticle	es		B)	Nano	rods	i nanosti u	ciure:
	C)	Nano layers			D)	None	of the abov	e	
62.	Whie	h ratio decides	the effi	ciency o	fnanos	substan	ces?		
	A)	Weight / vol	ume		B)	Surfa	ce area / voli	ime	
	C)	Volume / we	eight		D)	Press	ure / volume		
63.	Sound	d waves with fi	requenc	ies abov	e 20 K	Hz are o	called		
	A)	Audible way	ves		B)	Infra	sonic waves		
	C)	Ultrasonic w	aves		D)	Supe	rsonic waves		
64.	What (I =	is the intensity 10 ⁻⁶ W/m ²)	y level o	of sound	in dB s	scale for	r normal con	versation?	
	A)	30 dB	B)	60 dB		C)	90 dB	D)	120 dB
65.	The p	ersistence of s	ound afi	ter the so	ource h	as ceas	ed to produce	e it is knov	vn as:
	A)	Echo			B)	Reve	rberation		
	C)	Noise			D)	Loud	ness		

66.	Whe mecl	n an alternatin nanical vibratio	g voltag ons are j	e is appl produced	ied along	ng an a a perpe	ixis, of cert	ain crystals	like quar	tz, n is:
	A)	Piezoelectri	c effect		B)	Maa	netostrictic	on effect	inomeno	11 157
	C)	Inverse Piez	zoelectr	ic effect	D)	Inve	rse Magnel	tostriction e	ffect	
67.	An u	ltrasonic wave	of freq	uency 0.	1 MHz	sent to	wards the s	seabed retur	ns after ().6 s.
	Calc	ulate the depth	of the s	sea. Velo	city of	sound	in sea wate	er is 1800 m/	s.	
	A)	270 m			B)	540	m			
	C)	1080 m			D)	400	m			
68.	Whic	h one of the fo	llowing	g lasers e	mploys	optica	l pumping	?		
	A)	Ruby laser			B)	Heli	um Neon la	aser		
	C)	Semiconduc	tor lase	r	D)	Dye	laser			
69.	Whic	h information	of light	from the	obiect	is reco	orded in a h	ologram?		
	A)	Phase	-		B)	Inter	sitv	6 1 ° B1 0111		
	C)	Both A and	В		D)	Neitl	ner A nor B	3		
70.	A ste index A)	ep-index fibre difference of 1.515	has a co 0.015. B)	re of refi What is t 1.485	active he refra	index 1 active i C)	.5 and the index of the 1.47	cladding has cladding? D)	s a refrac 1.53	tive
71.	A cel A) C)	l reaction is fea Negative Zero	asible if	the emf	of the o B) D)	cell is: Posit Both	ive positive a	nd negative		
72.	KCl i A) B) C) D)	s used in a salt KCl forms a KCl is a stro KCl is ionic K ⁺ and CΓ io	bridge good je ng elect	because: Ily with rolyte e almost	agar-ag the sarr	ar ne mob	ility			
73.	What satura	is the pH of a ted calomel ele	solution ectrode	i in a hyd at 25°C i	rogen e	electro nf of tl	de half cell he combine	that is coup d cell is 0.5	led with 525 V?	а
	A)	4	B)	5.25		C)	9.5	D)	13.25	
74.	Which A) B) C) D)	among the fo Corrosion is It is a fast pro It occurs in d It occurs only	llowing uniform ocess ry cond y on hor	is TRUE and occ ition nogeneo	E regard urs thro us meta	ding el oughou il surfa	ectrochemi at the surfac aces.	cal corrosio ce	n?	
75.	How r	nany peaks <i>(ot</i> pyl chloride?	her tha	n the TM	S peak)	are of	oserved in t	he NMR sp	ectrum o	f
	A)	4	B)	3		C)	2	D)	1	

22012 A

76.	Which among the following is IR inactive? A) CO_2 B) H_2O	C) HCl	D)	N_2							
77.	 Solvatochromism refers to the ability of a compound to change colour due to a change in: A) Molecular weight of the compound B) Polarity of the solvent C) Viscosity of the solvent D) Wavelength of incident radiation 										
78.	The UV-vis spectra of acetone shows two bands one at 187 nm and the other at 273 nm. These can be assigned to and respectively. A) $\pi - \pi^* \& n - \pi^*$ B) $\pi - \pi^* \& n - \sigma^*$ C) $n - \pi^* \& \pi - \pi^*$ D) $n - \sigma^* \& \pi - \pi^*$										
79.	In a DTA plot, ΔT is placed on the y-axis a A) Mass B) C) Time D)	nd on the x-axis. Length None of these									
80.	The solvent with the highest eluting powerA)MethanolB)C)DichloromethaneD)	among the following Hexane Acetone	g is:								
81.	 Which among the following is FALSE regarding SEM? A) It has a higher depth of field when compared to TEM B) It employs scattered electrons in image capturing C) Specimens are mounted on very thin copper grids D) Requires vacuum for its operation 										
82.	 The term 'Russian Doll model' is associated with the structure of: A) multi-walled carbon nanotubes B) single-walled carbon nanotubes C) fullerenes D) nano gold 										
83.	Identify the metamers from among the followA)ethoxyethaneB)C)1-methoxy propaneD)	owing with formula (2-methoxy propand All the above	C ₄ H ₁₀ O? e								
84.	Which among the following is a polyamide A) Rayon B) Orlon	? C) Nylon	D)	Dacron							
85.	How many gauche forms does the diequato possess? A) 1 B) 2	orial form <i>trans</i>	- dimethy D)	vlcyclohexane 4							

,

22012 A

The IUPAC name of the compound given below is (X, Y)-5-nitro-2-methylhexa-86. 2,4-dienal. Here X and Y refers to:

- A) 2E, 4E 2E, 4Z B) 2Z, 4Z D) C) 2Z, 4E
- While calculating the calcium carbonate equivalent hardness, the Multiplication 87. Factor is highest for:

A)
$$Al_2(SO_4)_3$$
 B) $Ca(HCO_3)_2$ C) $MgCO_3$ D) $MgSO_4$

- 88. The TRUE statement regarding Hot Lime Soda process is:
 - A) Coagulants like alum are to be used
 - B) Dissolved gases cannot be removed at all in this method
 - C) The process is slow when compared to cold lime soda process
 - D) Water with residual hardness of ~ 30ppm can be obtained by this process
- 89. Clarkes degree refers to the number of parts of calcium carbonate equivalents in ----parts of water.
 - 10^{5} 10⁹ A) 70,000 B) 10^{6} C) D)

90. The process of wet steam formation in boilers is called:

- Caustic embrittlement A) Foaming B)
- C) Priming D) Sludging
- 91. Which of the following is an exit controlled loop?
 - while loop for loop A) B) do-while loop Nested loop
 - D) C)
- Find the output of the following code? 92.

#include<stdio.h> main() { int x=4: constint y=6; y++; printf("%d",y); } A) 6 5 C)

7 B) Compilation error D)

93. Consider the following statements and choose the correct option?

- 1. strcmp is an inbuilt string function
- 2. stremp can return only 0 and 1

3. stremp supports both case sensitive and case insensitive checking

- A) 1, 2 and 3 B) 1 and 3 only
- C) 1 only D) 1 and 2 only

94. Variables that are both alive and active throughout the entire C programme are part of ----- storage class type.

A) Automatic B) Register C) Static D) External

95. Which of the following statements is **not** true about functions in C?

- A) Functions enable code reuse
- B) Functions after execution returns multiple values.
- C) Every programme must contain at least one function
- D) Functions are capable of hiding information

96. The function in which both called function and calling function is same are called?

- A) User defined functions B) Recursive function
- C) Standard library function D None of the above

97. Arguments that are given as input by user before running a program are called?

- A) Function arguments B) Formal arguments
- C) Command-Line arguments D) Parameterized arguments
- 98. Choose the correct statement about call by value in C?
 - A) Call by value does not use pointers.
 - B) Call by Value copies the variable value in multiple memory locations
 - C) Call by value protects original variables from changes in called functions
 - D) All of the above
- 99. Which of the following statement is **not** true about gets() function in C?
 - A) gets() read input from the standard input.
 - B) gets() read the input until it encounters newline.
 - C) gets() do array bound testing.
 - D) gets() has a return type.

100. Find the odd one among the following?

- A) Assembler B) Web browser
- C) Compiler D) Debugger
- 101. Choose the correct statement about the given ternary operator condition? expression 1: expression 2
 - A) If both expressions are true condition will be checked.
 - B) If condition is false expression 1 will be evaluated else expression 2.
 - C) If condition is true expression 1 will be evaluated else expression 2.
 - D) Both expressions will be evaluated irrespective of condition.

102.	What is the return type of pow() function in C?							
	α	noat	В)	char	C)	double	D)	integer
103.	<pre>Find the output of the following code? #include <stdio.h> #include<string.h> void find() { char f[50]; char h[] = "Bye"; printf("%s", h); strcpy(f, h); printf("%s", f); } void main() { find(); } </string.h></stdio.h></pre>							
	A) C)	eyB Bye ByeBye		B) D)	Bye Com	pilation Error		
104.	Which of the following is not a reserved keyword in C? A) auto B) switch C) main D) default							default
105.	Find A)	the correct hie * / + -	erarchy o B)	f arithmetic o + - * /	perators C)	in C? * + - /	D)	_ * + /

Read the passage and choose the most appropriate answer from the options provided for questions 106 -110.

An English scientist known as the world's first human cyborg has died at 64.

Dr. Peter Scott-Morgan made headlines in 2020 as the subject of the documentary "Peter: The Human Cyborg."

The film followed the ground-breaking scientist's journey as he refused to accept his terminal diagnosis and worked to become fully robotic to extend his life after he was diagnosed with motor neuron disease — the same condition that afflicted Stephen Hawking.

Scott-Morgan, who had a Ph.D. in robotics, developed an incredibly life-like avatar to smile and express his emotions as his face muscles failed, had a voice box fitted with his own recorded speech, used eye-tracking technology to operate computers and used a wheelchair that allowed him to stand and lie flat.

He also used a catheter and colostomy bag to use the toilet and had his larynx removed so saliva did not flood his lungs.

106. The word 'cyborg' derives from the expression:

A) scientific bridge B) cyclizedbrid	A)	scientific bridge	B)	cyclizedbridg
--------------------------------------	----	-------------------	----	---------------

C) cybernetic organism D) sanctified organism

107.	The v A)	vord 'avatar' i Latin	is of B)	origin. Greek	C)	Sanskrit	D)	Egyptian			
108.	 A 'terminal diagnosis' relates to illnesses that: A) are related to any kind of travel B) are predominantly contracted at airport terminals C) are active for a short term, subside, and then recur D) lead to death 										
109,	Moto A) C)	r neuron disea any robot human cybo	ase can a orgs only	ffect: B) D)	any l huma	numan an scientists oi	ıly				
110.	The p A) C)	hrase 'to use exaggeratio emergency	the toilet n	t' in the conte B) D)	ext of this euph exige	passage is a/a emism ency	n:				
Fill in 111 - 1	the bl 115.	anks, choosii	ng the m	ost appropri	ate of th	e options prov	vided fo	r questions			
111.	They A)	offered her all	mc B)	oney. any	C)	some	D)	most			
112.	He pr A)	omised me th will	at the jol B)	b be doi shall	ne. C)	would	D)	should			
113.	Have you seen the girlthe green dress? A) in B) on C) of D) with										
114.	The g A)	old was hiding	in the l B)	citchen cupbo hidden	oard. C)	hid	D)	hide			
115.	Let's A)	all work very will we	hard, B)	? shall we	C)	will you	D)	shall you			

Answer the following, choosing the most appropriate of the options given for questions 116-120.

116. 'To go the extra mile' means:

a,

.

- A) to travel alone at the end of a journey
- B) to eat to excess at the end of a meal
- C) to be cheerful and pleasant
- D) to exceed expectations

117.	Indicate the part of the sentence below that contains an error, or point out if there is no error in it:								
	Our professor P		proved that Q	Pythagoras was wro R		ong.			
	A)	Р	B)	Q	C)	R	D)	No error	
118.	He wa A) C)	as sitting a an	by himself in	an obscure c B) D)	orner of the No ar	colleg ticle required	ge library	у.	
119.	Where is the ICU,?								
	A)	please	B)	please me	C)	please say	D)	please tell	
120.	'I returned back home yesterday.' Which of the following words in this sentence is redundant?								
	A)	returned	l B)	back	C)	home	D)	yesterday	
